22U302

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS3 C03 / CC20U MTS3 C03 - MATHEMATICS - III

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours

Maximum : 60 Marks

Credit : 3

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. If $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} + \tan^{-1} t \mathbf{k}$. Find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.
- 2. Find the gradient of the function $f(x, y) = y e^{-2x^2y}$
- 3. Find the level curve of $f(x, y) = -x^2 + y^2$ passing through the point (2,3). Also find the gradient at the point.
- 4. Find the divergence of the vector field $\vec{F}(x,y,z) = (x-y)^3 \vec{i} + e^{-yz} \vec{j} + xy e^{2y} \vec{k}$
- 5. Determine whether the vector field $\mathbf{F} = (4x^3y^3 + 3)\mathbf{i} + (3x^4y^2 + 1)\mathbf{j}$ is conservative.
- 6. State Stokes' theorem.
- 7. Convert the equation $z = 2r \sin \theta$ to rectangular coordinates.
- 8. Express 5 5i in polar form.
- 9. Sketch the graph of Im(z) = -2.
- 10. Show that $i^{2i} = e^{-(1+4n)\pi}$

11. Evaluate
$$\oint_C \frac{dz}{z^2}$$
, where C is the ellipse $\frac{(x-2)^2}{1} + \frac{(y-5)^2}{4} = 1$.
12. Evaluate $\int_{-1}^{-1+i} 2z \, dz$

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

13. If
$$z = e^{uv^2}$$
 and $u = x^3$, $v = x - y^2$. Using chain rule find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

- 14. Evaluate $\oint_C (x^2 y^2) ds$ where C is given by $x = 5 \cos t, y = 5 \sin t, 0 \le t \le 2\pi$.
- 15. Using Green's theorem find the work done by the force $\mathbf{F} = (-16y + \sin x^2)\mathbf{i} + (4e^y + 3x^2)\mathbf{j}$ acting along the positively oriented simple closed curve C which is the boundary of the region in the upper half plane bounded by the graphs of y = x, y = -x and $x^2 + y^2 = 1$.

16. If
$$\mathbf{F} = xy\mathbf{i} + y^2z\mathbf{j} + z^3\mathbf{k}$$
, evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$ where S is the unit cube defined by $0 \le x \le 1, \quad 0 \le y \le 1, \quad 0 \le z \le 1.$

- 17. Show that the Jacobian of the transformation from spherical to rectangular coordinates $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)} = \rho^2 \sin \phi.$
- 18. Verify that the function $u(x, y) = e^x (x \cos y y \sin y)$ is harmonic. Also find v, the harmonic conjugate of u.
- ^{19.} Using ML-inequality find an upper bound for the absolute value of $\oint_C \frac{e^z}{z^2 + 1} dz$, where C is the circle |z| = 5.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

- 20. The position of a moving particle is given by $\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + 3t\mathbf{k}$. Find the vectors \mathbf{T}, \mathbf{N} and \mathbf{B} . Also find the curvature.
- 21. State Cauchy's integral formula. Using it evaluate.
 - a. $\oint_C \frac{(z-1)}{z(z-i)(z-3i)} dz$ where *C* is the circle $|z-i| = \frac{1}{2}$ b. $\oint_C \frac{\sin z}{z^2 + \pi^2} dz$ where *C* is the circle |z-2i| = 2

 $(1 \times 10 = 10 \text{ Marks})$
