\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS3 C03 / CC20U MTS3 C03-MATHEMATICS - III

(Mathematics - Complementary Course)
(2019 Admission onwards)
Time : 2.00 Hours

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. If $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}+\tan ^{-1} t \mathbf{k}$. Find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$.
2. Find the gradient of the function $f(x, y)=y-e^{-2 x^{2} y}$
3. Find the level curve of $f(x, y)=-x^{2}+y^{2}$ passing through the point $(2,3)$. Also find the gradient at the point.
4. Find the divergence of the vector field $\vec{F}(x, y, z)=(x-y)^{3} \vec{i}+e^{-y z} \vec{j}+x y e^{2 y} \vec{k}$
5. Determine whether the vector field $\mathbf{F}=\left(4 x^{3} y^{3}+3\right) \mathbf{i}+\left(3 x^{4} y^{2}+1\right) \mathbf{j}$ is conservative.
6. State Stokes' theorem.
7. Convert the equation $z=2 r \sin \theta$ to rectangular coordinates.
8. Express $5-5 i$ in polar form.
9. Sketch the graph of $\operatorname{Im}(z)=-2$.
10. Show that $i^{2 i}=e^{-(1+4 n) \pi}$
11. Evaluate $\oint_{C} \frac{d z}{z^{2}}$, where C is the ellipse $\frac{(x-2)^{2}}{1}+\frac{(y-5)^{2}}{4}=1$.
12. Evaluate $\int_{-1}^{-1+i} 2 z d z$
(Ceiling: 20 Marks)
Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. If $z=e^{u v^{2}}$ and $u=x^{3}, v=x-y^{2}$. Using chain rule find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
14. Evaluate $\oint_{C}\left(x^{2}-y^{2}\right) d s$ where C is given by $x=5 \cos t, y=5 \sin t, 0 \leq t \leq 2 \pi$.
15. Using Green's theorem find the work done by the force $\mathbf{F}=\left(-16 y+\sin x^{2}\right) \mathbf{i}+\left(4 e^{y}+3 x^{2}\right) \mathbf{j}$ acting along the positively oriented simple closed curve C which is the boundary of the region in the upper half plane bounded by the graphs of $y=x, y=-x$ and $x^{2}+y^{2}=1$.
16. If $\mathbf{F}=x y \mathbf{i}+y^{2} z \mathbf{j}+z^{3} \mathbf{k}$, evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where S is the unit cube defined by $0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad 0 \leq z \leq 1$.
17. Show that the Jacobian of the transformation from spherical to rectangular coordinates $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta}=\rho^{2} \sin \phi$.
18. Verify that the function $u(x, y)=e^{x}(x \cos y-y \sin y)$ is harmonic. Also find v, the harmonic conjugate of u.
19. Using ML-inequality find an upper bound for the absolute value of $\oint_{C} \frac{e^{z}}{z^{2}+1} d z$, where C is the circle $|z|=5$.
(Ceiling: 30 Marks)

Part C (Essay questions)

 Answer any one question. The question carries 10 marks.20. The position of a moving particle is given by $\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}$. Find the vectors \mathbf{T}, \mathbf{N} and \mathbf{B}. Also find the curvature.
21. State Cauchy's integral formula. Using it evaluate.
a. $\oint_{C} \frac{(z-1)}{z(z-i)(z-3 i)} d z$ where C is the circle $|z-i|=\frac{1}{2}$
b. $\oint_{C} \frac{\sin z}{z^{2}+\pi^{2}} d z$ where C is the circle $|z-2 i|=2$
