(Pages: 2)

Name:	• • • •
Reg. No:	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS-UG)

(Regular/Supplementary/Improvement)

CC20U MTS5 B05 – ABSTRACT ALGEBRA

(Mathematics – Core Course)

(2020 Admission onwards)

Time: 2.5 Hours

Maximum: 80 Marks Credit: 4

Section A

Answer *all* questions. Each question carries 2 marks.

- 1. Find the multiplicative inverse of [7] in Z_{15} .
- 2. Check whether the relation on \mathbb{R} defined by $a \sim b$ if $a \leq b$ is an equivalence relation.
- 3. Consider the permutation $\sigma = (1,2,3,4)$. Evaluate σ^{100} .
- 4. Find the number of elements in the set { $\sigma \in S_4$: $\sigma(3) = 3$ }.
- 5. Find the identity element of the binary operation \oplus on Z, defined by

$$a \oplus b = ab - a - b + 2$$

- 6. Give an example of a finite non-cyclic group.
- 7. Show that if every element of a group G is its own inverse, then G is abelian.
- 8. In $GL_2(\mathbb{R})$, find the order of the element $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$.
- 9. Prove that every cyclic group is abelian.
- 10. Find the number of generators of the cyclic group Z_{25}
- 11. Show that the function $\varphi \colon \mathbb{R}^{\times} \to \mathbb{R}^+$ defined by $\varphi(x) = |x|$ is a group homomorphism.
- 12. Find all cosets of the subgroup 4Z of 2Z.
- 13. Let $\mu = (1,2,4)$ in S_5 . Find the index of $\langle \mu \rangle$ in S_5
- 14. Give an example of a noncommutative ring.
- 15. Give an example of an integral domain which is not a field

(Ceiling: 25 Marks)

Section B

Answer *all* questions. Each question carries 5 marks.

16. Show that the set of all positive rational numbers forms an abelian group under the operation defined by $a * b = \frac{ab}{4}$

21U501

- 17. Let *G* be a group and *H* be a subset of *G*. Prove that *H* is a subgroup of *G* if and only if *H* is non-empty and $ab^{-1} \in H$ for all $a, b \in H$.
- 18. Let *a* be an element of a group *G*. If *a* has finite order and $k \in Z$, then prove that $a^k = e$, the identity element of *G*, if and only if o(a) divides *k*.
- 19. Prove that the inverse of a group isomorphism is a group isomorphism.
- 20. If *G* is an infinite cyclic group then prove that $G \cong Z$.
- 21. Discuss S_3 and draw its subgroup diagram.
- 22. Prove that the cancellation laws for multiplication hold in a commutative ring R if and only if R has no divisors of zero.
- 23. Prove that every field is an integral domain.

(Ceiling: 35 Marks)

Section C (Essay Type)

Answer any two questions. Each question carries 10 marks.

- 24. If $n \ge 2$, then prove that the collection of all even permutations of $\{1, 2, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 25. Prove that any permutation can be written as a product of transpositions.
- 26. State and prove Cayley's theorem.
- 27. Define new operations on *Z* by letting $a \oplus b = a + b 1$ ans $a \odot b = a + b ab$ for all $a, b \in Z$. Show that *Z* is a commutative ring under these operations.

$(2 \times 10 = 20 \text{ Marks})$
