\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023
 (CBCSS-UG)
 (Regular/Supplementary/Improvement)
 CC20U MTS5 B06 - BASIC ANALYSIS

(Mathematics - Core Course)
(2020 Admission onwards)
Time: 2.5 Hours

Section A

Answer all questions. Each question carries 2 marks.

1. Define denumerable sets. Give an example.
2. If z and a are elements in \mathbb{R} with $\mathrm{z}+\mathrm{a}=\mathrm{a}$ then prove that $z=0$.
3. State the Trichotomy property of set of positive real numbers.
4. If $a \in \mathbb{R}$ is such that $0 \leq a<\varepsilon$ for every $\mathcal{E}>0$, then prove that $a=0$.
5. Define supremum of a subset S of R. Give an example of a set which have neither a supremum nor an infimum.
6. Show that $\lim (1 / n)=0$.
7. Show that $\lim \left(\frac{2 n}{n+1}\right)=2$.
8. Show that the sequence $(\sqrt{ } n)$ is properly divergent.
9. Define a contractive sequence. Give an example.
10. Define a closed subset of the real line. Give an example.
11. Prove that the set $(0,1]$ is not open.
12. Express $-\sqrt{3}-i$ in polar form.
13. Find the reciprocal of $2-3 i$.
14. What do you mean by the deleted neighbourhood of a point in the complex plane? Give an example.
15. Find the real and imaginary parts of the function $f(z)=z^{2}-(2+i) z$.
(Ceiling: 25 Marks)

Section B

Answer all questions. Each question carries 5 marks.
16. State and prove Cantor's theorem.
17. State and prove Bernoulli's in equality.
18. Find all $x \in \mathbb{R}$ that satisfy the equation $|x+1|+|x-2|=7$.
19. State and prove Monotone subsequence theorem.
20. Prove that every contractive sequence is a Cauchy sequence.
21. Prove that a subset of \mathbb{R} is closed if and only if it contains all its cluster points.
22. Find the fourth roots of $z=1+i$.
23. Find the image of the rectangle with vertices $-1+i, 1+i, 1+2 i$ and $-1+2 i$.
(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.
24. State and prove nested intervals property.
25. Prove that there exists $x \in \mathbb{R}$ such that $x^{2}=2$.
26. Prove that a subset of \mathbb{R} is open if and only if it is the union of countably many disjoint open intervals in \mathbb{R}.
27. Find the image of the triangle with vertices $0,1+i$ and $1-i$ under the mapping $w=z^{2}$.

