\qquad
\qquad

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC20U MTS5 B07-NUMERICAL ANALYSIS
(Mathematics - Core Course)
(2020 Admission onwards)
Time : 2.00 Hours
Maximum : 60 Marks
Credit: 3

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

1. Use algebraic manipulations to show that the function $g(x)=\left(\frac{3+x-x^{4}}{2}\right)^{1 / 2}$ has a fixed point at p precisely when $f(p)=0$ where $f(x)=x^{4}+2 x^{2}-x-3$
2. Let $f(x)=x^{2}-6$ and $p_{0}=3$. Use Newton's method to find p_{3}
3. Discuss the disadvantages of Secant method comparing with Newton-Raphson method.
4. Suppose that $x_{0}=1, x_{1}=2, x_{2}=3, x_{3}=4, x_{4}=6$ and $f(x)=e^{x}$. Determine the interpolating polynomial $P_{1,3,4}(x)$.
5. Using the forward-difference formula approximate the derivative of $f(x)=\sin x$ at $x_{0}=0.5$ by considering $h=0.1$. Compute the actual error occurred in the approximation.
6. Write down the three-point endpoint formula and three-point midpoint formula to find the approximate derivative of a function $f(x)$ at a given point x_{0}.
7. Let $f(x)=\cos \pi x$. Use the midpoint formula and the values of $f(x)$ at $x=0.25,0.5$ and 0.75 to approximate $f^{\prime \prime}(0.5)$.
8. Determine the values of h that will ensure an approximation error of less than 0.00002 when approximating $\int_{0}^{\pi} \sin x d x$ using composite trapezoidal rule.
9. State the fundamental existence and uniqueness theorem for first order ordinary differential equations.
10. Show that the initial value problem $y^{\prime}=-\frac{2}{t} y+t^{2} e^{t}, 1 \leq t \leq 2, y(1)=\sqrt{2} e$ has a unique solution.
11. Use midpoint method to approximate $y(1.2)$ given $y^{\prime}=(y / t)-(y / t)^{2}, y(1)=1$.
12. Write the difference equation of the Adams-Bashforth two-step explicit method.

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.

13. Use method of false position to find solution of $\sin x-e^{-x}=0$ for $0 \leq x \leq 1$ accurate to within 10^{-3}.
14. Using Newton's divided difference formula construct an interpolating polynomials of degree three for the data given in the table,

x	-0.1	0.0	0.2	0.3
$f(x)$	5.30	2.00	3.19	1.00

Add $f(0.35)=0.97$ to the table and construct the interpolating polynomial of degree four.
15. Using Newton's forward-divided-difference formula evaluate $P_{4}(1.1)$ corresponding to the data given in the table,

x	1	1.3	1.6	1.9	2.2
$f(x)$	0.7652	0.6201	0.4554	0.2818	0.1104

16. Approximate $\int_{1}^{1.5} x^{2} \ln x d x$ using Trapezoidal rule. Find a bound for the error using error formula and compare this to the actual error.
17. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_{0}^{2}(1+x)^{-1} d x$. Determine the actual error of approximation.
18. Use Euler's method to approximate the solution of the initial value problem $y^{\prime}=y-t^{2}+1,0 \leq t \leq 2, y(0)=0.5 \quad$ with $\quad h=0.4$. The actual solution is given by $y(t)=(t+1)^{2}-0.5 e^{t}$. Compare the actual error at each step to the error bound.
19. Use Taylor's method of orders two and four to approximate the solution of the initial value problem $y^{\prime}=\frac{y^{2}+y}{t}, 1 \leq t \leq 3, y(1)=-2$, with $h=1$.
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. The question carries 10 marks.
20. Use the Bisection method to find solutions accurate to within 10^{-4} for $f(x)=x^{3}-7 x^{2}+14 x-6=0$ on the interval $[3.2,4]$.
21. Use Runge-Kutta method of order four to approximate the solution of the initial value problem $y^{\prime}=-(y+1)(y+3), 0 \leq t \leq 2, y(0)=-2$, with $h=0.5$. Compare the results to the actual values.

$$
(1 \times 10=10 \text { Marks })
$$

