23 P158

Name: .
Reg. No: ..
FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2023 (CBCSS - PG)
(Regular/Supplementary/Improvement)
CC19P ECO1 C04 - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - I
(Economics)
(2019 Admission onwards)
Time: 3 Hours

Part A

Answer all questions. Each question carries $1 / 5$ weightage.

1. A square matrix A equal to its transpose is:
(a) Symmetric matrix
(b) Skew symmetric matrix
(c) Scalar matrix
(d) Idempotent matrix
2. The value of the determinant $|5|$ is:
(a) 0
(b) 5
(c) 1
(d) None of these
3. Two third of a number decreased by 2 equals 4 . The number is:
(a) 6
(b) 8
(c) 9
(d) 7
4. The amount of fertilizer applied (x) and yield per plot (y) of a crop are related by an equation $y=20.38+2.5 x-0.125 x^{2}$. Then the quantity of fertilizer to be used to get maximum yield is equal to:
(a) 20
(b) 10
(c) 20.38
(d) 2.5
5. The rank of the matrix $\left(\begin{array}{ll}3 & 2 \\ 6 & 4\end{array}\right)$ is:
(a) 0
(b) 1
(c) 2
(d) None of these
6. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$ is:
(a) 0
(b) 1
(c) $\cos \mathrm{x}$
(d) None of these
7. $\frac{d\left(e^{-3 x}\right)}{d x}$ is:
(a) $e^{-3 x}$
(b) $3 e^{-x}$
(c) $-e^{-3 x}$
(d) $-3 e^{-3 x}$
8. The slope of the supply function $S=2+7 P$ is:
(a) 0
(b) 2
(c) 5 \square
9. The point of intersection of demand and supply curves is known as: (a) Break-even point (b) Equilibrium point (c) Isoquants
(d) None of these
10. If $u=e^{-4 x y z}$, then $\frac{\partial u}{\partial x}$ at $y=1, z=1$ is:
(a) $-4 e^{-4 x}$
(b) $4 e^{-4 x}$
(c) $e^{-4 x}$
(d) $-4 e^{-4 x y z}$
11. $\int \frac{1}{x^{2}} d x$ is equal to:
(a) $\frac{-1}{x}+c$
(b) $\frac{-1}{x^{2}}+c$
(c) $\frac{-2}{x^{3}}$
(d) $\log x^{2}+c$
12. The producers surplus when the supply function is $p=10+2 q$ and the equilibrium price 20 is:
(a) 35
(b) 25
(c) 100
(d) 50
13. The degree of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\frac{d^{2} y}{d x^{2}}-6 y=0$ is:
(a) First
(b) Second
(c) Third
(d) None of these
14. Which of the following areas can the difference equation be applied?
(a) Cob-Web model
(b) Harrod Domar model
(c) Both a and b
(d) None of these
15. The arithmetic mean between \boldsymbol{a} and 10 is 30 , the value of ' \boldsymbol{a} ' should be:
(a) 45
(b) 50
(c) 60
(d) 53
$(15 \times 1 / 5=3$ Weightage $)$
Part B (Very Short Answer Questions)
Answer any five questions. Each question carries 1 weightage.
16. Define exponential function.
17. Given $Q=700-2 P+0.02 y$, where $\mathrm{p}=25$ and $y=5000$. Find the price elasticity of demand.
18. Define price elasticity of demand.
19. Find the first order and second order partial derivatives of
$Z=3 x^{3}-2 x y^{2}+2 x^{2} y+y^{3}+8$.
20. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=\frac{x}{y}$.
21. (i) Write down general formula for first order linear difference equation.
(ii) Solve: $y_{t+1}=0.6_{y t}$ with $y_{0}=10$.
22. Identify the number of terms in the A.P. $10,13, \ldots \ldots, 40$.
23. The salary of employee increases every year by 7% of his initial salary and his initial basic salary is Rs.5000. Find his salary at the end of $5^{\text {th }}$ year.
($5 \times 1=5$ Weightage)

Part C (Short Answer Questions)

Answer any seven questions. Each question carries 2 weightage.
24. Show that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
25. Obtain the inverse of matrix $\left[\begin{array}{ccc}2 & -3 & 0 \\ 3 & 1 & -2 \\ -1 & 0 & -4\end{array}\right]$
26. Solve the system of equations by Crammer's rule.

$$
2 x-3 y+5 z=11,5 x+2 y-7 z=-12,-4 x+3 y+z=5
$$

27. Find the rank of the matrix $\left(\begin{array}{llll}2 & 3 & 1 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 4\end{array}\right)$.
28. Define the term limit of a function. Find $\lim _{x \rightarrow 0} \frac{x-2}{x+2}$.
29. The demand function faced by a firm is $p=500-0.2 x$ and its cost function is $c=25 x+10000(\mathrm{p}=$ price, $\mathrm{x}=$ output, $\mathrm{c}=\operatorname{cost})$. Find the output at which the profits of the firm are maximum. Also find the price it will charge.
30. Optimize $T C=15+4 Q-3 Q^{2}+2 Q^{3}$.
31. Evaluate $\int_{0}^{\infty} x e^{-x} d x$.
32. What is first order linear differential equation and then solve $\frac{d y}{d x}+\frac{3}{x} y=\frac{1}{x^{2}}$.
33. Calculate the total interest on (i) Rs. 500 for 73 days, (ii) Rs. 600 for 15 weeks and (iii) Rs. 850 for 4 months, all at 7% per annum.
($7 \times 2=14$ Weightage)
Part D (Essay questions)
Answer any two questions. Each question carries 4 weightage.
34. Find the adjoint of the matrix and verify that $A(\operatorname{Adj} A)=|A| I$ if $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7\end{array}\right)$
35. A firm has the following total cost and demand functions:
$C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50$ and $Q=100-p$. Find profit maximizing level of output; also find profit at this level of output.
36. Demand and Supply functions under perfect competition are given by $Q_{D}=16-x^{2}$ and $Q_{s}=2 x^{2}+4$. Find market price, consumer's surplus and producer's surplus.
37. (i) The rate at which the volume of sales (Q) for a new type of printer increase after an
advertising campaign is given by the equation $\frac{d Q}{d t}=0.05(500-Q)$, given that
$Q=0$ at $t=0 . Q$ is the number of printers sold, t is the time in years. Solve the
differential equation to obtain an expression for Q in terms of t
(ii) Write down differential equations of the type limited and unlimited growth.
