\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)
(Regular/Supplementary/Improvement)

CC22P MST1 C01 - ANALYTICAL TOOLS FOR STATISTICS - I
 (Statistics)

(2022 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part-A

Answer any four questions. Each question carries 2 weightage.

1. Show that the function $f(x, y, z)=(y+z)^{2}+(z+x)^{2}+x y z$ has no maximum or minimum value.
2. What is directional derivaties and total derivaties of a function? Explain.
3. Find the minimum value of $f(x, y)=x^{2}+5 y^{2}-6 x+10 y+6$.
4. Prove that, if a function $f(z)$ is analytic within and on a closed contour c and a is any point lying in it, then $f^{\mid}(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{(z-a)^{2}} d z$.
5. Establish Lioville's theorem.
6. Prove that the function $e^{1 / z}$ has an isolated singularity at $z=0$.
7. Find the residue of $\frac{1}{\left(z^{2}+1\right)^{3}}$ at $z=i$.

Part-B

Answer any four questions. Each question carries 3 weightage.
8. Prove that the function $u(x, y)=e^{-x} \sin y$ is harmonic and find the corresponding analytic function.
9. State and prove Cauchy-Reimann condition for an analytic function in polar form.
10. Show that $\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\frac{\pi}{2}$.
11. Evaluate
a) $\int_{0}^{\infty} t^{3} e^{-t} \sin t d t$
b) $\int_{0}^{\infty} \frac{e^{-t}-e^{-3 t}}{t} d t$
12. Find the inverse Laplace transform of $\frac{1}{s^{2}(s+1)^{2}}$ and $\frac{1}{\left(s^{2}+1\right)^{2}}$.
13. Find the Fourier series expansion of $f(x)=x \sin x ;-\pi<x<\pi$.
14. Find the finite cosine transform of $f(x)=\left(1-\frac{x}{\pi}\right)^{2} ; 0<x<\pi$.

Part-C

Answer any two questions. Each question carries 5 weightage.
15. What is Poisson's integral formula? Prove Poisson integral formula.
16. (a) State and Prove Laurent's theorem.
(b) If $0<|z-1|<2$, then express $f(z)=\frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of $(z-1)$.
17. (a) State and prove Jordan's lemma.
(b) State and prove the Cauchy Residue theorem.
18. (a) Solve the initial value problem, $y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=3, y^{\prime}(0)=1$.
(b) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=2, y^{\prime}(0)=-4$.

