23P154

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC22P MST1 C01 - ANALYTICAL TOOLS FOR STATISTICS - I

(Statistics)

(2022 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Show that the function $f(x, y, z) = (y + z)^2 + (z + x)^2 + xyz$ has no maximum or minimum value.
- 2. What is directional derivaties and total derivaties of a function? Explain.
- 3. Find the minimum value of $f(x, y) = x^2 + 5y^2 6x + 10y + 6$.
- 4. Prove that, if a function f(z) is analytic within and on a closed contour c and a is any point lying in it, then $f^{|}(a) = \frac{1}{2\pi i} \int \frac{f(z)}{(z-a)^2} dz$.
- 5. Establish Lioville's theorem.
- 6. Prove that the function $e^{1/z}$ has an isolated singularity at z = 0.
- 7. Find the residue of $\frac{1}{(z^2+1)^3}$ at z = i.

 $(4 \times 2 = 8$ Weightage)

Part-B

Answer any *four* questions. Each question carries 3 weightage.

8. Prove that the function $u(x, y) = e^{-x} siny$ is harmonic and find the corresponding analytic function.

9. State and prove Cauchy-Reimann condition for an analytic function in polar form.

10. Show that $\int_0^\infty \frac{dx}{x^2+1} = \frac{\pi}{2}$.

- 11. Evaluate
 - a) $\int_0^\infty t^3 e^{-t} sint \, dt$ b) $\int_0^\infty \frac{e^{-t} e^{-3t}}{t} \, dt$
- 12. Find the inverse Laplace transform of $\frac{1}{s^2(s+1)^2}$ and $\frac{1}{(s^2+1)^2}$.
- 13. Find the Fourier series expansion of $f(x) = x \sin x$; $-\pi < x < \pi$.
- 14. Find the finite *cosine* transform of $f(x) = (1 \frac{x}{\pi})^2$; $0 < x < \pi$.

 $(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any two questions. Each question carries 5 weightage.

- 15. What is Poisson's integral formula? Prove Poisson integral formula.
- 16. (a) State and Prove Laurent's theorem.
 - (b) If 0 < |z 1| < 2, then express $f(z) = \frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z 1).
- 17. (a) State and prove Jordan's lemma.

(b) State and prove the Cauchy Residue theorem.

18. (a) Solve the initial value problem, y" + 4y' + 3y = 0, y(0) = 3, y'(0) = 1.
(b) Solve y" + 2y' + 5y = 0, y(0) = 2, y'(0) = -4.

 $(2 \times 5 = 10 \text{ Weightage})$
