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Part-A
Answer any four questions. Each question carries 2 weightage.

1.  Show that the function  has no maximum or minimum value.

2.  What is directional derivaties and total derivaties of a function? Explain.

3.  Find the minimum value of .

4.  Prove that, if a function  is analytic within and on a closed contour  and  is any point lying in it,

then  

5.  Establish Lioville's theorem.

6.  Prove that the function  has an isolated singularity at .

7.  Find the residue of   at .

   (4 × 2 = 8 Weightage)
Part-B

Answer any four questions. Each question carries 3 weightage.

8.  Prove that the function  is harmonic and find the corresponding analytic function.

9.  State and prove Cauchy-Reimann condition for an analytic function in polar form.

10.  Show that .

11.  Evaluate
a)                         b) 

12.  Find the inverse Laplace transform of  and 

13.  Find the Fourier series expansion of  

14.  Find the finite  transform of 

(4 × 3 = 12 Weightage)
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Part-C
Answer any two questions. Each question carries 5 weightage.

15.  What is Poisson's integral formula? Prove Poisson integral formula.

16.  (a) State and Prove Laurent's theorem.
(b) If  then express  in a series of positive and negative powers of 

     .

17.  (a) State and prove Jordan's lemma.
(b) State and prove the Cauchy Residue theorem.

18.  (a) Solve the initial value problem,  .
(b) Solve 

(2 × 5 = 10 Weightage)
 

*******

0 < |z − 1| < 2, f(z) = z

(z−1)(z−3)

(z − 1)

+ 4 + 3y = 0, y(0) = 3, (0) = 1y′′ y′ y′

+ 2 + 5y = 0, y(0) = 2, (0) = −4.y′′ y′ y′


