\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023
 (CBCSS - PG)
 (Regular/Supplementary/Improvement)

 CC22P MST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - II

 CC22P MST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - II}
(Statistics)
(2022 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part-A

Answer any four questions. Each question carries 2 weightage.

1. State and prove basis theorem.
2. If W_{1} and W_{2} are finite subspace of a vectorspace V , then prove that $\mathrm{d}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)=\mathrm{d}\left(\mathrm{W}_{1}\right)+\mathrm{d}\left(\mathrm{W}_{2}\right)-\mathrm{d}\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2}\right)$.
3. Explain (i) symmetric matrix (ii) Idempotent matrix and (iii) Nilpotent matrix with an example of each.
4. Explain computation of inverse of a matrix by partitioning.
5. Illustrate the reduction of symmetric matrix to a diagonal form.
6. State and prove the necessary and sufficient condition for a real quadratic form X'AX to be negative definite.
7. Define quadratic forms. Show that the form $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{2} x_{3}-2 x_{3} x_{1}+2 x_{1} x_{2}$ is an indefinite quadratic form.

$$
(4 \times 2=8 \text { Weightage })
$$

Part-B

Answer any four questions. Each question carries 3 weightage.
8. Write a short note on Gram- Schmidt orthogonalization process.
9. If A and B are idempotent matrices, then show that the rank of idempotent matrix is equal to its trace.
10. Explain elementary operations of a matrix. Reduce the following matrix in to row reduced echelon form. $A=\left[\begin{array}{ccc}1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & 13\end{array}\right]$
11. If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the characteristic roots of a matrix A, Show that trace (A) $=\sum_{i=1}^{n} \lambda_{i}$
12. Illustrate the reduction of a symmetric matrix to a diagonal form.
13. Define reflexive g-inverse. Show that a reflexive g-inverse always exist and it is not unique.
14. Find rank, index and signature of the real quadratic form $2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}-8 x_{2} x_{3}-4 x_{3} x_{1}+12 x_{1} x_{2}$.

Part-C

Answer any two questions. Each question carries 5 weightage.
15. (a) Define Kernel and image of linear transformation.
(b) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{4}$ be a linear map defined by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, x_{3}\right)$. Find Ker T and $\operatorname{Im} \mathrm{T}$.
(c) Consider the mapping $f: R^{4} \rightarrow R^{3}$, given by $f(a, b, c, d)=(a+b, b+c, a+d)$. Find $\operatorname{Ker} T$ and $\operatorname{Im} T$.
16. (a) State and prove Cayley- Hamilton theorem.
(b)Verify Cayley-Hamilton theorem for $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$ and hence find A^{-1}.
17. (a) Define singular value decomposition.
(b) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigen values of a square matrix A not necessarily distinct then prove that product of eigen values equal to determinant of A .
18. (a) State and prove necessary and sufficient condition for the diagonalizability of a square matrix.
(b) Prove that If A and B be two symmetric matrices such that the roots of the equation $|A-\lambda B|=0$ are all distinct then there exist a matrix P such that $P^{T} A P$ and $P^{T} B P$ are both diagonal matrices.

