23P156

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC22P MST1 C03 - DISTRIBUTION THEORY

(Statistics)

(2022 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. If X and Y are independent and identically distributed geometric random variables. Find the distribution of Max(X, Y).
- 2. State and prove the recurrence relation for cumulants of power series distribution.
- 3. (a) Define Pareto distribution and mention its important characteristics.(b) State any characterisation of Weibul distribution.
- 4. If X and Y are independent exponential random variables with parameter one. Show that $\frac{X}{X+Y}$ has U(0,1) distribution.
- 5. Define a finite mixture of probability density function. Verify that a mixture of pdf's satisfies the properties of a pdf.
- 6. Define Order Statistics. Derive the distribution of n^{th} order statistic.
- 7. Define non central 't' distribution. Show that square of non central 't' follows non central 'F' distribution.

 $(4 \times 2 = 8 \text{ Weightage})$

Part-B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Define m.g.f of a random variable. Find the mgf of i) Y = aX + b ii) $Y = \frac{X-m}{\sigma}$
- 9. Let X be a random variable with p.m.f $P(X = j) = p_j$, j = 0, 1, 2, ... Define $q_j = P(X > j)$, j = 0, 1, 2, ... and $Q(s) = \sum_{j=0}^{\infty} q_j s^j$. Show that $Q(s) = \frac{1-P(s)}{1-s}$ for |s| < 1 where P(s) is the p.g.f of X.
- 10. If X and Y are independent standard normal variates then obtain the distribution of $U = \frac{X}{|Y|}$.
- 11. Write down the Beta probability functions of the second kind. Derive its arithmetic mean and harmonic mean.

12. If X and Y are standard normal variates with correlation coefficient ρ ,

(a) Prove that X+Y and X-Y are independent.

(b) $Q = \frac{X^2 - 2\rho XY + Y^2}{1 - \rho^2}$ is distributed as chi-square.

- 13. State Chebychev's inequality. If X be distributed with pdf f(x) = 1, 0 < X < 1. Prove that $P(|X \frac{1}{2}| < 2\sqrt{\frac{1}{2}}) \ge \frac{3}{4}$.
- 14. If X is a Chi-square variate with n d.f then prove that for large n, $\sqrt{2X}$ follows normal $N(\sqrt{2n}, 1)$ distribution.

 $(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any *two* questions. Each question carries 5 weightage.

- 15. Define negative binomial distribution. Obtain its moment generating function. Hence obtain mean and variance.
- 16. Write down the differential equation which generates the Pearsonian distribution. Deduce the Gamma and Beta distributions as members of the family. Also identify a distribution which is not a member of the system.
- a) Show that Var(X)= E(Var(X|Y)) + Var(E(X|Y)).
 b) Derive the joint distribution of X_(r) and X_(s), the rth and sth order statistics.
- 18. In sampling from a normal population, show that the sample mean \bar{X} and the sample variance S^2 are independently distributed.

$(2 \times 5 = 10 \text{ Weightage})$
