23P157

(Pages: 2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC22P MST1 C04 - PROBABILITY THEORY

(Statistics)

(2022 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Define monotone field. Show that a sigma field is monotone field and conversely.
- 2. Let (Ω, \mathscr{F}, P) be the probability space and $\{A_n, n \ge 1\}$ be a sequence of events in \mathscr{F} , If $A_n \longrightarrow A$, then show that $P(An) \longrightarrow P(A)$ in the case of monotone increasing sequence of events.
- 3. Test whether the following is a distribution function.
 i) F(x) = tan⁻¹x; -∞ < x < ∞ ii)F(x) = ²/_πtan⁻¹x; 0 < x < ∞
- 4. Define Mathematical expectation of a random variable X. Examine whether E(X) exists when x follows the probability density function $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$
- 5. Define convergence in rth mean. Examine the convergence in rth mean for the sequence of random variables $\{X_n, n \ge 1\}$ with $P[X_n = n] = \frac{1}{n}$, $P[X_n = 0] = 1 \frac{2}{n}$ and $P[X_n = -n] = \frac{1}{n}$, n = 1, 2, ...
- 6. Define complete convergence of a sequence of distribution function $\{F_n, n \ge 1\}$. If $F_n(x) = \begin{cases} 0, \text{ if } x < 0 \\ 1 e^{-nx}, \text{ if } x \ge 0 \end{cases}$ examine whether it is completely convergent or not.
- 7. Let X_1, X_2, \ldots, X_n be identically and independently distributed random variables according to exponential distribution with density $f(x) = \theta e^{-\theta x}, x > 0$. Define $S_n = X_1 + X_2 + \ldots + X_n$ Show that $Z_n = \frac{S_n \frac{n}{\theta}}{\frac{\sqrt{n}}{\theta}}$ follows standard normal distribution when $n \longrightarrow \infty$

$(4 \times 2 = 8$ Weightage)

Part-B

Answer any *four* questions. Each question carries 3 weightage.

8. If A and B are two independent events defined over a probability space (Ω, \mathscr{A}, P) then prove the following.

i) A and B^c are independent

ii) A^c and B are independent

- iii) A^c and B^c are independent
- 9. State and prove Basic inequality.

- 10. a) Derive the inversion formula for derive the probability mass function of an integer valued random variable.
 - b) If the characteristic function of a random variable X is $\phi_x(t) = (q + pe^{it})^n$ derive its probability mass function
- 11. Define tail sigma field. Prove that tail event has probability either zero or one.
- Define convergence in probability. If $X_n \xrightarrow{P} X$ and $C \in \mathbb{R}$ is a constant, then show that $CX_n \xrightarrow{P} CX$. 12.
- 13. State and prove Levy's continuity theorem for characteristic function.
- 14. State and prove Kolmogorov inequality

$(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any two questions. Each question carries 5 weightage.

15. Derive the characteristic function of a random variable X having probability density function as follows

$$egin{aligned} & ext{i} f(x) = rac{1}{\pi(1+x^2)}, -\infty < x < \infty \ & ext{ii} f(x) = egin{cases} 1+x, & ext{if} -1 \leq x < 0 \ 1-x, & ext{if} \ 0 < x \leq 1 \end{aligned}$$

- 16. a) State and prove Taylor series expansion on characteristic function.
 - b) The characteristic function of an integer valued random variable is $\phi_x(t) = \frac{p}{1-qe^{it}}$. Derive the probability mass function of X using inversion formula
- 17. a) Show that convergence on probability implies convergence in distribution.

b) Let $\{F_n(x), n \ge 1\}$ be a sequence of distribution functions defined by $F_n(x) = egin{cases} 0, & ext{if } x < 0 \ 1 - rac{1}{n}, & ext{if } 0 \leq x < n \ 1 & ext{if } x \geq n \end{cases}$ Examine whether the sequence $\{F_n(x), n \geq 1\}$ converges in

distribution.

- 18. a) Let $\{X_k\}, k = 1, 2, 3, ...$ be a sequence of independent random variables where each variable of the sequence X_k takes values k and -k with equal probabilities. Examine whether WLLN holds or not
 - b) State and prove Lindeberge- Levy's central limit theorem.

 $(2 \times 5 = 10 \text{ Weightage})$
