\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023
 (CBCSS - PG)

(Regular/Supplementary/Improvement)
CC19P MTH1 C01 - ALGEBRA - I
(Mathematics)
(2019 Admission onwards)
Time: 3 Hours
Maximum : 30 Weightage

Part A

Answer all questions. Each carries 1 weightage.

1. Describe all symmetries of a line segment in \mathbb{R}.
2. State Burnside's Formula. How many distinguishable necklaces can be made using 7 different colored beads of same size.
3. Find the order of $(3,10,9)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.
4. Prove that no group of order 30 is simple.
5. For a prime p, prove that every group G of order p^{2} is abelian.
6. Prove that every group G^{\prime} is a homomorphic image of a free group G.
7. Find all zeros of $\left(x^{3}+2 x+5\right)\left(3 x^{2}+2 x\right)$ in \mathbb{Z}_{7}.
8. Let F be a ring of all functions mapping \mathbb{R} to \mathbb{R} and let C be the subring of F consisting of all constant functions in F. Is C an ideal in F ? Justify your answer.

$$
(8 \times 1=8 \text { Weightage })
$$

Part B

Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

9. If m is a square free integer, that is not divisible by the square of any prime, then prove that every abelian group of order m is cyclic.
10. Let X be a G - set and let $x \in X$. Then prove that $\left|G_{x}\right|=\left(G: G_{x}\right)$. If $|G|$ is finite, then prove that $\left|G_{x}\right|$ is a divisor of G.
11. Define center of a group and commutator subroups of a group with examples. Prove that commutator subgroup is a normal subgroup of the group.

Unit 2

12. If G has a compostition series and N is a proper normal subgroup of G, then prove that there exists a composition series containing N.
13. State and prove third Sylow theorem.
14. If H and K are finite subgroups of a group G, then prove that $|H K|=\frac{(|H|)(|K|)}{|H \cap K|}$

Unit 3

15. Determine all groups of order 10 upto isomorphism using group presentations.
16. Prove that an element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $(x-a)$ is a factor of $f(x) \in F[x]$.
17. Is the polynomial $x^{5}+x^{4}+x^{3}+x^{2}+x+1$ is irreducible. Prove that cyclotomic polynomials are irreducible.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each carries 5 weightage.

18. (a) Let H be a subgroup of G. Then prove that left coset multiplication is well defined by the equation $(a H)(b H)=(a b) H$, if and only if H is a normal subgroup of a group G.
(b) Find the order of the group $\mathbb{Z}_{12} \times \mathbb{Z}_{18} /\langle(4,3)\rangle$ and the order of the element $(3,4)+\langle(4,3)\rangle$ in the group.
19. (a) Let p be a prime, and let G be a finite group and p divides $|G|$. Then prove that G has an element of order p and consequently, a subgroup of order p.
(b) Let G be a finite group. Then G is a p-group if and if only $|G|$ is a power of p.
20. (a) State class equation and find the class equation D_{4}.
(b) Prove that no group of order 48 is simple.
21. (a) State and prove Eisentein criterion.
(b) Show that $x^{2}+8 x-2$ is irreducible over \mathbb{Q}. Is $f(x)$ irreducible over \mathbb{R} ? over \mathbb{Z} ?
