\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)
(Regular/Supplementary/Improvement)

CC19P MTH1 C02 - LINEAR ALGEBRA

(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Find all the subspaces of \mathbb{R}^{2}
2. Define coordinate matrix of α relative to the ordered basis \mathcal{B}.
3. Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(\sin x_{1}, x_{2}\right)$. Check whether T is linear or not.
4. Let $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}\right\}$ be the basis for \mathbb{R}^{2} defined by $\alpha_{1}=(3,5)$ and $\alpha_{2}=(1,4)$. Find the dual basis of \mathcal{B}.
5. Let F be a field and let f be the linear functional on F^{2} defined by $f\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$. Let $T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)$ and $g=T^{t} f$. Find $g\left(x_{1}, x_{2}\right)$.
6. Define an invariant subspace of a vector space V. Let T be any linear operator on V then prove that rang of T is invariant under T
7. If V is an inner product space, the for any vectors α, β in V and any scalar c prove that $\|c \alpha\|=|c\|\mid \alpha\|$
8. Give an orthogonal set in \mathbb{R}^{3} with standard inner product.

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. Show that the n tuple space F^{n} is a vector space.
10. Let V be a finite- dimensional vector space $n=\operatorname{dim} V$. Then prove that any subset of V which contains more than n vectors is linearly independent.
11. Find the inverse of the linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}+4 x_{2}\right)$.

UNIT - II
12. Let V be a finite dimensional vector space over the field F. For each vector α in V define $L_{\alpha}(f)=f(\alpha), f \in V^{*}$. Then prove that the mapping $\alpha \rightarrow L_{\alpha}$ is an isomorphism of V onto $V^{* *}$.
13. Let T be the linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 2 x_{2}-x_{3}\right)$. IF $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $\mathcal{B}^{\prime}=\left\{\beta_{1}, \beta_{2}\right\}$, where $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1), \alpha_{3}=(1,0,0), \beta_{1}=(0,1), \beta_{2}=(1,0)$. Find the matrix of T relative to the pair $\mathcal{B}, \mathcal{B}^{\prime}$.
14. Let T be a linear operator on the dinite dimensional space V Let $c_{1}, c_{2}, \ldots, c_{k}$ be the distict characteristic values of T and let W_{i} be the space of characteristic vectors associated with the characteristic value c_{i} If $W=W_{1}+W_{2}+\ldots+W_{k}$, then show that if \mathcal{B}_{i} is an ordered basis for W_{i}, then $\mathcal{B}=\left(\mathcal{B}_{1}, \mathcal{B}_{2} \ldots, \mathcal{B}_{k}\right)$ is an ordered basis for W.
UNIT - III
15. Define projection on a vector space V. Prove that
(a) Any projection E is diagonalizable.
(b) If E is projection on R along N, then $(I-E)$ is the projection on N along R.
16. Define an inner product on the space $F^{n \times n}$, the space of all $n \times n$ matrices over F.
17. Apply the Gram-Schmidt process to the vectors $\beta_{1}=(3,0,4), \beta_{2}=(-1,0,7), \beta_{3}=(2,9,11)$ to obtain an orthonormal basis for \mathbb{R}^{3} with the standard inner product.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. (a) If W_{1} and W_{2} are finite-dimensional subspaces of a vector space V then prove that $W_{1}+W_{2}$ is finite- dimensional also prove that $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)$
(b) If W is a proper subspace of a finite dimensional space V, the prove that W is finite dimensional and $\operatorname{dim} W<\operatorname{dim} V$
19. Let V be an n dimensional vector space over the field F, prove that $L(V, V)$ is finite dimensional and has dimension n^{2}.
20. Let V and W be vector spaces over the field F, and let T be a linear transformation from V into W. If V and W are finite dimensional then prove the following.
(a) $\operatorname{rank}\left(T^{t}\right)=\operatorname{rank}(T)$
(b) The range of T^{t} is the annihilator of the null space of T^{t}.
21. (a) Let V be an inner product space, W a finite dimensional subspace, and E the orthogonal projection of V on W. Prove that the mapping $\beta \rightarrow \beta-E \beta$ is the orthogonal projection of V on W^{\perp}.
(b) State and Prove Bessel's Inequality

