(Pages: 2)

Name:	•••
Reg. No:	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C03 - REAL ANALYSIS - I

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let X be a metric space, $E \subseteq X$ and p be a limit of E. Prove that there exists a sequence $\{p_n\}$ of elements in E such that $p_n \neq p$ for every n and $\{p_n\}$ converges to p.
- 2. Prove that if a function f has a limit at a point p, then it is unique.
- 3. State true or false and justify: "The function $f(x) = \begin{cases} \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$ has a discontinuity of second kind at x = 0."
- 4. If $a + \frac{b}{2} + \frac{c}{3} = 0$, where *a*, *b*, *c* are real constants, then prove that $a + b x + c x^2 = 0$ has at least one real root between 0 and 1.
- 5. Let f be a non negative and continuous function defined on [a, b] such that $\int_{a}^{b} f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.
- 6. State true or false and justify: "Convergent series of continuous functions may have a discontinuous sum."
- 7. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 8. Define equicontinuous family of functions and give an example.

$(8 \times 1 = 8$ Weightage)

Part B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Let X be a metric space and $K \subseteq Y \subseteq X$. Prove that K is compact relative to X if and only if K is compact relative to Y.
- 10. Let *P* be a perfect set in \mathbb{R}^k . Prove that *P* is uncountable.
- 11. Prove that continuous image of a connected set is connected.

23P103

UNIT II

- 12. State and prove Mean Value Theorem.
- 13. Prove that a continuous function defined on [a, b] is Riemann-Stieltjes integrable.
- 14. If *f* is Riemann integrable over [a, b] and if there is a differentiable function *F* such that F'(x) = f(x), then prove that $\int_a^b f(x) dx = F(b) F(a)$.

UNIT III

- 15. State and prove Cauchy criterion for uniform convergence of sequence of functions.
- 16. Check the uniform convergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$.
- 17. Prove that there exists a continuous function on the real line which is nowhere differentiable.

$(6 \times 2 = 12 \text{ Weightage})$

Part B

Answer any two questions. Each question carries 5 weightage.

- 18. Let X and Y be metric spaces and $f: X \to Y$ be a continuous function.
 - (a) If X is compact, then prove that f is uniformly continuous.
 - (b) If X is compact and f is a bijective map, then prove that the map $f^{-1}: Y \to X$ defined by $f^{-1}(f(x)) = x$ is continuous, for $x \in X$.
 - (c) Can we drop compactness of X in (b)? Justify.
- 19. State and prove L'Hospital's rule.
- 20. Let $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b].
 - (a) If $m \le f \le M$, ϕ is continuous on [m, M], and $h(x) = \phi(f(x))$ on [a, b], then prove that $h \in \mathcal{R}(\alpha)$ on [a, b].
 - (b) Prove that $fg \in \mathcal{R}(\alpha)$.
 - (c) Prove that $|f| \in \mathcal{R}(\alpha)$ and $\left|\int_{a}^{b} f dx\right| \leq \int_{a}^{b} |f| dx$.
- 21. If *f* is a continuous complex function on [a, b], then prove that there exists a sequence of polynomials $\{P_n\}$ such that $\{P_n\}$ converges uniformly to *f* on [a, b].

$(2 \times 5 = 10 \text{ Weightage})$
