\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)
(Regular/Supplementary/Improvement)
CC19P MTH1 C05 - NUMBER THEORY
(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Prove that the Dirichlet product is commutative and associative.
2. Prove that $\forall n \geq 1, \sum_{d / n} \Lambda(d)=\log n$.
3. Show that $\left(f^{-1}\right)^{\prime}=-f^{\prime} *(f * f)^{-1}$, provided $f(1) \neq 0$.
4. Define Chebyshev's ψ function and show that $\psi(x)=\sum_{m \leq \log _{2} x} \sum_{p \leq x^{1 / m}} \log p$.
5. Let $\{a(n)\} \quad$ be a non-negative sequence such that $\sum_{n \leq x} a(n)\left[\frac{x}{n}\right]=x \log x+O(x), \forall x \geq 1$. Then show that $\sum_{n \leq x} \frac{a(n)}{n}=\log x+O(1), \forall x \geq 1$.
6. Check whether 3 is a quadratic residue modulo 23 .
7. Find the cipher text of 'JANUARY' in the affine cryptosystem with enciphering key $(7,3)$ in the 26 letter alphabet system.
8. Find the inverse of the matrix $\left[\begin{array}{cc}15 & 17 \\ 4 & 9\end{array}\right](\bmod 26)$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9. (a) Prove that $\forall n \geq 1, \sum_{d / n} \phi(d)=n$.
(b) Find all integers n such that $\phi(n)=\phi(2 n)$.
10. Prove that the set of all multiplicative functions is a subgroup of the set of all arithmetical functions with $f(1) \neq 0$ with respect to the Dirichlet multiplication.
11. Prove that for $x \geq 2, \sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+O(x)$

UNIT - II
12. State and prove Abel's identity.
13. $\forall x \geq 1$, Prove the following:
(a) $\sum_{n \leq x} \psi\left(\frac{x}{n}\right)=x \log x-x+O(\log x)$
(b) $\sum_{n \leq x} \tau\left(\frac{x}{n}\right)=x \log x+O(x)$
14. Show that there is a constant A such that $\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O\left(\frac{1}{\log x}\right), \forall x \geq 2$.

UNIT - III
15. Prove that if P is an odd integer, then $(-1 \mid P)=(-1)^{\frac{P-1}{2}}$ and $(2 \mid P)=(-1)^{\frac{P^{2}-1}{8}}$.
16. Solve the system: $x+3 y \equiv 1(\bmod 26)$

$$
7 x+9 y \equiv 1(\bmod 26)
$$

17. (i) Describe about RSA cryptosystem.
(ii) How to send a digital signature in RSA cryptosystem?
$(6 \times 2=12$ Weightage $)$

Part C

Answer any two questions. Each question carries 5 weightage.
18. Prove that λ is completely multiplicative and $\forall n \geq 1, \sum_{d / n} \lambda(d)=\left\{\begin{array}{ll}1, & \text { if } n \text { is a square } \\ 0, & \text { otherwise }\end{array}\right.$. Also show that $\lambda^{-1}(n)=|\mu(n)|$.
19. State and prove Euler's summation formula. Hence show that
$\forall x \geq 1, \sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{1-s}+\zeta(s)+O\left(x^{-s}\right)$, if $s>0, s \neq 1$ where ζ is the Remann zeta functon.
20. Prove that the following relations are logically equivalent:
(a) $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$
(b) $\lim _{x \rightarrow \infty} \frac{\tau(x)}{x}=1$
(c) $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$
21. State and prove quadratic reciprocity law for Legendre's symbol and hence determine whether 219 is a quadratic residue modulo 383.
$(2 \times 5=10$ Weightage $)$

