Name:
Reg. No: \qquad (CBCSS-PG)
(Regular/Supplementary/Improvement)

CC19P MTH3 C11 - MULTIVARIABLE CALCULUS AND GEOMETRY
 (Mathematics)

(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Prove that every span is a vector space.
2. Define an independent set and prove that no independent set contains the null vector.
3. State true or false and justify your statement.

A vector space can have more than one basis with different dimensions.
4. Define parametrization of a parametrized curve. Give an example.
5. Prove that the total signed curvature of a closed curve is an integer multiple of 2π.
6. Show that any open disc in the $x y$ - plane is a surface.
7. Define surface patch.
8. Show that the second fundamental form of a plane is zero.

$$
(8 \times 1=8 \text { Weightage })
$$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Prove that $B A$ is linear if A and B are linear transformations. Also prove that A^{-1} is linear and invertible.

10 . Let Ω be the set of all invertible linear operators on R^{n}. Prove that Ω is an open subset of $L\left(R^{n}\right)$.
11. Define contraction. Prove that if X is a complete metric space, and if Φ is a contraction of X into X, then there exists one and only one $x \in X$ such that $\Phi(x)=x$.

UNIT II

12. Show that a parametrized curve has a unit - speed reparametrization if and only if it is regular.
13. Prove that the curvature of a circular helix is a constant.
14. Show that every plane in R^{3} is a surface with an atlas consisting of a single surface patch.

UNIT III

15. Calculate the first fundamental forms of the surface $\sigma(u, v)=(\sin u \sinh v, \sinh u \cosh v, \sinh u)$
16. Define curvature, normal curvature and geodesic curvature. Explain in brief the relationship between them.
17. Differentiate between Gauss and Weingarten maps.

$$
(6 \times 2=12 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. Establish the relationship between the total derivative and partial derivatives of a map \boldsymbol{f} from an open set $\boldsymbol{E} \subset \boldsymbol{R}^{\boldsymbol{n}}$ into $\boldsymbol{R}^{\boldsymbol{m}}$ at a point $\boldsymbol{x} \in \boldsymbol{E}$.
19. State and prove Inverse function theorem.
20. a) Give an example to show that the reparametrization of a closed curve need not be closed.
b) Show that if a curve $\boldsymbol{\gamma}$ is T_{1} - periodic and T_{2} - periodic, then it is $\left(k_{1} T_{1}+k_{2} T_{2}\right)-$ periodic for any integers k_{1} and k_{2}.
21. a) Prove that two curves which touch each other at a point \boldsymbol{P} of a surface (i.e which intersect at \boldsymbol{P} and have parallel tangent vectors at \boldsymbol{P}) have the same normal curvature at \boldsymbol{P}.
b) State and prove Meusnier's Theorem.
($2 \times 5=10$ Weightage $)$

