22P302

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C12 - COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Consider the stereographic projection between \mathbb{C}_{∞} and $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$. For each of the points 0 and 3 + 2i of \mathbb{C} give the corresponding points of the unit sphere S.
- 2. Find the fixed points of a dilation and the inversion on \mathbb{C}_{∞} .
- 3. State and prove symmetry principle.
- 4. State and prove Cauchy's estimate.

5. Let
$$\gamma: [0, 2\pi] \to \mathbb{C}$$
 given by $\gamma(t) = e^{it}$. Evaluate $\int_{\gamma} \frac{1}{z} dz$.

- 6. Using residue theorem evaluate $\int_0^\infty \frac{1}{1+x^2} dx$.
- 7. For |a| < 1, let $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$. Prove that $\varphi_a'(a) = \frac{1}{1-|a|^2}$
- 8. Hadamard three cycle theorem.

 $(8 \times 1 = 8$ Weightage)

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. For a given power series ∑_{n=0}[∞] a_n(z − a)ⁿ, let 1/R = lim sup |a_n|^{1/n}, 0 ≤ R ≤ ∞. Prove the following
 (a) If |z − a| < R, the series converges absolutely.
 (b) If |z − a| > R, the series diverges.
- 10. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0. Prove that the function f is infinitely differentiable on B(a; R) and furthermore $f^{(k)}(z)$ is given by the series $\sum_{n=k}^{\infty} n(n-1)(n-2)\dots(n-k+1)a_n(z-a)^{n-k}$ for all $k \ge 1$ and |z-a| < R. Also for $n \ge 0, a_n = \frac{1}{n!}f^{(n)}(a)$.

11. Let z_1, z_2, z_3, z_4 be four distinct points in \mathbb{C}_{∞} . Prove that (z_1, z_2, z_3, z_4) is a real number iff all four points lie on a circle.

UNIT - II

- 12. Let γ be a closed rectifiable curve in \mathbb{C} . Prove that $n(\gamma; a)$ is constant for a belonging to a component of $G = \mathbb{C} \{\gamma\}$. Also prove that $n(\gamma; a) = 0$ for a belong to the unbounded component of G.
- 13. State and prove the first version of Cauchy's integral formula.
- 14. Prove that if G be an open set and $f: G \to \mathbb{C}$ be a differentiable function, then f is analytic on G.

UNIT - III

- 15. If f has an isolated singularity at a, prove that z = a is a removable singularity iff $\lim_{z \to a} (z a)f(z) = 0$.
- 16. State and prove the residue theorem.
- 17. Let f be meromorphic in G with zeros $z_1, z_2, ..., z_n$ and poles $P_1, P_2, ..., P_m$ repeated according to their multiplicity. If g is analytic in G and γ is a closed rectifiable curve in G with $\gamma \approx 0$ and not passing through any z_i or P_j . Prove that $\frac{1}{2\pi i} \int_{\gamma} g \frac{f'}{f} = \sum_{i=1}^n g(z_i)n(\gamma; z_i) \sum_{j=1}^m g(P_j)n(\gamma; P_j)$.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Let u and v be real valued functions defined on a region G and suppose that u and v have continuous partial derivatives. Prove that $f: G \to \mathbb{C}$ defined by f(z) = u + iv is analytic iff u and v satisfy the Cauchy-Riemann equations.
- 19. Let $\gamma : [a, b] \to \mathbb{C}$ is of bounded variation and suppose that $f : [a, b] \to \mathbb{C}$ is continuous. Prove that there is a complex number I such that for every $\epsilon > 0$ there is a $\delta > 0$ such that when $P = \{t_0 < t_1 < \ldots < t_m\}$ is a partition of [a, b] with $||P|| = max\{(t_k - t_{k-1}) : 1 \le k \le m\} < \delta$ then $\left|I - \sum_{k=1}^m f(\tau_k) \left[\gamma(t_k) - \gamma(t_{k-1})\right]\right| < \epsilon$ for whatever choice of points $\tau_k, t_{k-1} \le \tau_k \le t_k$.
- 20. Prove that if γ_0 and γ_1 are two closed rectifiable curves in G with $\gamma_0 \sim \gamma_1$, then $\int_{\gamma_0} f = \int_{\gamma_1} f$ for every function f analytic on G.
- 21. State and prove all the three versions of maximum modulus principles.

 $(2 \times 5 = 10 \text{ Weightage})$
