22P303	(Pages: 2)	Name:
		Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C13 - FUNCTIONAL ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time: 3 Hours Maximum: 30 Weightage

Part A

Answer any *all* questions. Each question carries 1 weightage.

- 1. Show that unit ball of a linear space E is a convex set.
- 2. Define a complete system with example.
- 3. Define projection of x in H onto L, where L is a closed subspace of H.
- 4. If E is a closed subspace of a Hilbert space M and let $\operatorname{codim} E=1$, then show that $\dim E^\perp=1$.
- 5. State Hahn-Banach Theorem. Show that for all $x_0 \in X$ there exists $f_0 \in X^* \{0\}$ such that $f_0(x_0) = \|f_0\| \cdot \|x_0\|$
- 6. State Arzela theorem.
- 7. Define norm convergence, strong convergence and weak convergence.
- 8. If A and B are invertible operators then show that AB is ivertible and $(AB)^{-1} = B^{-1}A^{-1}$

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

- 9. Prove that the dimension of E/E_1 is n if and only if there exist x_1, x_2, \ldots, x_n linearly independent vectors relative to E_1 such that for every $x \in E$ there exist unique set of numbers $a_1, a_2, \ldots a_n$ and a unique vector $y \in E_1$ such that $x = \sum_{i=1}^n a_i x_i + y$
- 10. Let X_0 be a closed subspace of X.. Verify X/X_0 is a normed space together with the norm defined by $||[x]|| = \inf_{y \in X_0} ||x y||$
- 11. Let E be a normed space. Prove that there exists a complete normed space E^1 and a linear operator $T: E \to E^1$ such that ||Tx|| = ||x|| for all $x \in E$. Also prove image T is dense in E^1 .

UNIT-II

12. State and prove Cauchy Schwartz inequality.

- 13. Prove that for any $x \in H$ and any orthonormal system $\{e_i\}_1^\infty$, there exists a $y \in H$ such that $y = \sum_{i=1}^\infty \langle x, e_i \rangle e_i$
- 14. If E is a closed subspace of H and codim E=1, then show that the subspace E^{\perp} is 1-dimensional.

UNIT - III

- 15. Prove that the dual space of c_0 is l_1 .
- 16. Prove that $K(X \to Y)$ is a closed linear subspace of $L(X \to Y)$.
- 17. If $A: X \to Y$ is compact then prove that $A^*: Y^* \to X^*$ is compact.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. State and Prove Minkowski's inequality for sequences
- 19. Show that the Hilbertspace is seperable if and only if there exist a complete orthonormal system $\{e_i\}_{i\geq 1}$
- 20. State and prove Riesz representation theorem.
- 21. Let X be a normed space and let Y be a complete normed space. Then prove that $L(X \to Y)$ is a Banach Space.

 $(2 \times 5 = 10 \text{ Weightage})$
