\qquad
Reg.No: \qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)
 (Regular/Supplementary/Improvement)

 CC19P MTH3 C13-FUNCTIONAL ANALYSIS

 CC19P MTH3 C13-FUNCTIONAL ANALYSIS
 (Mathematics)
 (2019 Admission onwards)

Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Show that unit ball of a linear space E is a convex set.
2. Define a complete system with example.
3. Define projection of x in H onto L, where L is a closed subspace of H.
4. If E is a closed subspace of a Hilbert space M and let $\operatorname{codim} E=1$, then show that $\operatorname{dim} E^{\perp}=1$.
5. State Hahn-Banach Theorem. Show that for all $x_{0} \in X$ there exists $f_{0} \in X^{*}-\{0\}$ such that $f_{0}\left(x_{0}\right)=\left\|f_{0}\right\| \cdot\left\|x_{0}\right\|$
6. State Arzela theorem.
7. Define norm convergence, strong convergence and weak convergence.
8. If A and B are invertible opertaors then show that $A B$ is ivertible and $(A B)^{-1}=B^{-1} A^{-1}$

$$
(8 \times 1=8 \text { Weightage })
$$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9. Prove that the dimension of E / E_{1} is n if and only if there exist $x_{1}, x_{2}, \ldots, x_{n}$ linearly independent vectors relative to E_{1} such that for every $x \in E$ there exist unique set of numbers $a_{1}, a_{2}, \ldots a_{n}$ and a unique vector $y \in E_{1}$ such that $x=\sum_{i=1}^{n} a_{i} x_{i}+y$
10. Let X_{0} be a closed subspace of X.. Verify X / X_{0} is a normed space together with the norm defined by $\|[x]\|=\inf _{y \in X_{0}}\|x-y\|$
11. Let E be a normed space. Prove that there exists a complete normed space E^{1} and a linear operator $T: E \rightarrow E^{1}$ such that $\|T x\|=\|x\|$ for all $x \in E$. Also prove image T is dense in E^{1}.

UNIT - II

12. State and prove Cauchy Schwartz inequality.
13. Prove that for any $x \in H$ and any orthonormal system $\left\{e_{i}\right\}_{1}^{\infty}$, there exists a $y \in H$ such that $y=\sum_{i=1}^{\infty}<x, e_{i}>e_{i}$
14. If E is a closed subspace of H and $\operatorname{codim} E=1$, then show that the subspace E^{\perp} is 1-dimensional.

UNIT - III

15. Prove that the dual space of c_{0} is l_{1}.
16. Prove that $K(X \rightarrow Y)$ is a closed linear subspace of $L(X \rightarrow Y)$.
17. If $A: X \rightarrow Y$ is compact then prove that $A^{*}: Y^{*} \rightarrow X^{*}$ is compact.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. State and Prove Minkowski's ineqality for sequences
19. Show that the Hilbertspace is seperable if and only if there exist a complete orthonormal system $\left\{e_{i}\right\}_{i \geq 1}$
20. State and prove Riesz representation theorem.
21. Let X be a normed space and let Y be a complete normed space. Then prove that $L(X \rightarrow Y)$ is a Banach Space.

