\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

 (CBCSS-PG)(Regular/Supplementary/Improvement)
CC19P MTH3 C14 - PDE AND INTEGRAL EQUATIONS
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Solve the equation $-\mathrm{yu}_{\mathrm{x}}+\mathrm{xu} \mathrm{y}_{\mathrm{y}}=\mathrm{u}$ subject to the initial condition $\mathrm{u}(\mathrm{x}, 0)=\phi(\mathrm{x})$.
2. Which are the condition for a first order quasilinear partial differential equation to have a unique solution?
3. Derive the general solution of one dimensional heat equation.
4. Define Cauchy problem for quasilinear equations.
5. State the mean value principle.
6. If $\mathrm{y}^{\prime \prime}(\mathrm{x})=\mathrm{F}(\mathrm{x})$ and y satisfies the conditions $\mathrm{y}(0)=0$ and $\mathrm{y}(1)=0$, show that $\mathrm{y}(\mathrm{x})=\int_{0}^{1} K(x, \xi) F(\xi) d \xi$, where $\mathrm{K}(\mathrm{x}, \xi)=\left\{\begin{array}{l}\xi(x-1), x>\xi \\ x(\xi-1), x<\xi\end{array}\right.$.
7. Define separable kernel and give an example of it.
8. Determine the resolvent kernel associated with $\mathrm{K}(\mathrm{x}, \xi)=\mathrm{x}+\xi$ in $(0,1)$ in the form of power series in λ obtaining the first three terms.
($8 \times 1=8$ Weightage)

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT-1

9. Show that the Cauchy problem $u_{x}+u_{y}=1, u(x, x)=x$ has infinitely many solutions.
10. Find a coordinate system $s=s(x, y), t=t(x, y)$ that transforms the equation $u_{x x}+2 u_{x y}+15 u_{y y}=0$ into canonical form.
11. Consider the problem
$u_{t t}-c^{2} u_{x x}=0, \quad-\infty<x<\infty-----(1)$
$u(x, 0)=f(x), u_{t}(x, 0)=g(x), \quad-\infty<x<\infty-----(2)$
Fix $T>0$. Prove that the Cauchy problem (1), (2) in the domain $-\infty<\mathrm{x}<\infty, \mathrm{o} \leq \mathrm{t} \leq \mathrm{T}$ is well- posed for $f \in C^{2}(\Re), g \in C^{\prime}(\Re)$.

UNIT-2

12. Solve the problem:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{xx}}=0,0<\mathrm{x}<\pi, \mathrm{t}>0 \\
& \mathrm{u}(0, \mathrm{t})=\mathrm{u}(\pi, \mathrm{t})=0, \mathrm{t} \geq 0 \\
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})= \begin{cases}x, & 0 \leq x \leq \frac{\pi}{2} \\
\pi-x, & \frac{\pi}{2} \leq x \leq \pi\end{cases}
\end{aligned}
$$

13. Prove that the Neumann problem has a unique solution.

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=F(x, t), 0<x<L, t>0 \\
& u_{x}(0, t)=a(t), u_{x}(L, t)=b(t), t \geq 0 \\
& u(x, 0)=f(x), 0 \leq x \leq L \\
& u_{t}(x, 0)=g(x), 0 \leq x \leq L
\end{aligned}
$$

14. Derive the equations for Poisson's kernel.

UNIT-3

15. Transform the problem $y^{\prime \prime}+y=x ; y(0)=0, y^{\prime}(1)=0$ to a Fredholm integral equation Using Green's function.
16. Solve the Fredholm integral equation by iterative method: $y(x)=1+\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi$.
17. Formulate the integral equation corresponding to the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+(\lambda x+3)=0$.
$(6 \times 2=12$ Weightage $)$

PART C

Answer any two questions. Each question carries 5 weightage.
18. a. Use the method of characteristics strips solve the equation $p^{2}+q^{2}=2 A$ subject to the condition $\mathrm{u}(\mathrm{x}, 2 \mathrm{x})=1$.
b. Write the canonical form of the equation $u_{x x}+4 u_{x y}+u_{x}=0$.
19. Solve the problem $u_{t t}-u_{x x}=t^{3},-\infty<x<\infty, t>0$ subject to the conditions.
$u(x, 0)=x+\sin x,-\infty<x<\infty$,
$u_{t}(x, 0)=0,-\infty<x<\infty$,
20. Solve using separation of variables:

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{tt}}-9 \mathrm{u}_{\mathrm{xx}}=0,0<\mathrm{x}<2 \mathrm{t}>0 \\
& \mathrm{u}_{\mathrm{x}}(0, \mathrm{t})=\mathrm{u}_{\mathrm{x}}(2, \mathrm{t})=0, \mathrm{t} \geq 0 \\
& \mathrm{u}(\mathrm{x}, 0)=\cos ^{2} \pi \mathrm{x}, \quad 0 \leq \mathrm{x} \leq 2 \\
& \mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=\sin ^{2} \pi \mathrm{x}, \quad 0 \leq \mathrm{x} \leq 2 .
\end{aligned}
$$

21. Determine the characteristic values of λ and the corresponding characteristic functions of the equation $\mathrm{y}(\mathrm{x})=\mathrm{F}(\mathrm{x})+\lambda \int_{0}^{2 \pi} \sin (x-\xi) \mathrm{y}(\xi) \mathrm{d} \xi$ considering all possible cases.
