22P305

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 E02 - CRYPTOGRAPHY

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer any *all* questions. Each question carries 1 weightage.

- 1. Decrypt "HPHTWWXPPELEXTOYTRSE" using Shift Cipher with key K = 11.
- 2. List all the invertible elements in Z_{35} .
- 3. Define Permutation Cipher.
- 4. Define the cryptosystem One-Time Pad.
- 5. Let **X** be a random variable which takes on values on the set X. If |X| = n and $Pr[x] = \frac{1}{n}$ for all $x \in X$, then prove that $H(\mathbf{X}) = \log_2 n$.
- 6. State Jensen's inequality.
- 7. What you mean by round key mixing and whitening in SPN?
- 8. Define a Hash family.

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Prove that the linear congruence $ax \equiv b \mod m$ has unique solution in modulo m if and only if gcd(a,m) = 1.
- 10. (a) Define Vigenere Cipher.
 - (b) Suppose m = 6 and the keyword is "CIPHER" in Vigenère Cipher. Using this key decrypt the ciphertext "VPXZGIAXIVWPUBTTMJPWIZITWZT".
- ^{11.} (a) Suppose $K = \begin{bmatrix} 11 & 8 \\ 3 & 7 \end{bmatrix}$ be the key used in Hill Cipher with m = 2, over Z_{26} . Encrypt the plaintext "july".
 - (b) Find the corresponding decryption function.

- 12. Explain Huffman's algorithm.
- 13. Let (P, C, K, E, D) be a cryptosystem. Then prove that $H(\mathbf{K}|\mathbf{C}) = H(K) + H(P) H(C)$.
- 14. Suppose M is the Multiplicative Cipher and S is the Shift Cipher. Then verify that $S \times M$ is the Affine Cipher with equiprobable keys.

UNIT - III

- 15. Suppose that X₁, X₂ and X₃ are independent discrete random variables defined on the set {0,1}. Let ε_i denote the bias of X_i, for i = 1, 2, 3. Prove that X₁ ⊕ X₂ and X₂ ⊕ X₃ are independent if and only if ε₁ = 0, ε₃ = 0 or ε₂ = ±¹/₂.
- 16. Explain the MIXCOLUMN algorithm in AES.
- 17. Explain the algorithm of Merkle-Damgard construction.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. (a) Explain the working of Linear Feedback Shift Register.
 - (b) Suppose K = 8 and the plaintext is "rendezvous" in Auto-key Cipher. Generate the key stream and hence encrypt the given plaintext.
- 19. (a) What are the most common types of attack models? Explain.

(b) Explain the cryptanalysis of the Vigenère Cipher.

20. Let $\wp = \{a, b\}$ with $Pr[a] = \frac{1}{4}$, $Pr[b] = \frac{3}{4}$ and $\kappa = \{K_1, K_2, K_3\}$ with $Pr[K_1] = \frac{1}{2}$, $Pr[K_2] = \frac{1}{4}$, $Pr[K_3] = \frac{1}{4}$. Let $C = \{1, 2, 3, 4\}$ be the set of all possible ciphertexts and suppose the encryption functions are defined to be $e_{VL}(a) = 1$, $e_{VL}(b) = 2$, $e_{VL}(a) = 2$, $e_{VL}(b) = 3$, $e_{VL}(a) = 3$, $e_{VL}(b) = 4$. Compute the conditional

 $e_{K_1}(a) = 1, e_{K_1}(b) = 2, e_{K_2}(a) = 2, e_{K_2}(b) = 3, e_{K_3}(a) = 3, e_{K_3}(b) = 4.$ Compute the conditional probabilities Pr[x|y] and Pr[y|x] for all $x \in X$ and $y \in Y$.

21. (a) Explain the security of Hash functions using Preimage, Second Preimage and Collision problems.(b) Explain the algorithms in Random Oracle Model.

 $(2 \times 5 = 10 \text{ Weightage})$
