22P307

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY3 C10 - NUCLEAR AND PARTICLE PHYSICS

(Physics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. Briefly enumerate properties of nuclear force.
- 2. Derive an expression for the kinetic energy of the alpha particle.
- 3. Briefly explain Pauli's neutrino hypothesis.
- 4. Explain how reaction cross-section and reaction rate vary in nuclear fusion.
- 5. Classify the principles of nuclear radiation detection.
- 6. Distinguish between a single channel analyser and multichannel analysers.
- 7. Give a detailed explanation for families of particles.
- 8. Write a short note on conservation of parity.

 $(8 \times 1 = 8 \text{ Weightage})$

Section B

Answer any *two* questions. Each question carries 5 weightage.

- 9. Derive partial wave analysis of nucleon-nucleon scattering.
- 10. Give the evidences of the shell structure of the nucleus. Explain the shell model of the nucleus starting from main assumptions.
- 11. Explain semiconductor detectors and surface barrier detectors in detail.
- 12. Describe the eight fold way and show how the octet and decuplet of particles can be formed. Explain quark theory as evolved from Eight fold way model.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *two* questions. Each question carries 3 weightage.

^{13.} Compute the total BE and BE per nucleon for : a) Ne^{20} b)Fe⁵⁶ c)U²³⁵

14. Classify the following beta decays as (allowed, firstforbidden, etc) and type (fermi, Gamow-Teller) transitions.

a) ${}^{3}\text{H}(1/2+) \dot{a} {}^{3}\text{He}(1/2+)$ b) ${}^{14}\text{O}(0+) \dot{a} {}^{14}\text{N}(0+)$ c) ${}^{47}\text{Sc}(7/2-) \dot{a} {}^{47}\text{Ti}(3/2-)$ d) ${}^{36}\text{Cl}(2+)\dot{a} {}^{36}\text{S}(0+)$ e) ${}^{153}\text{Eu}(3+) \dot{a} {}^{152}\text{Sm}(2+)$ f) ${}^{50}\text{V}(6+)\dot{a} {}^{50}\text{Ti}(2+)$

- 15. Find the multipolarities of radiations emitted in the following gamma transitions.
 - a) 3/2+ à 1/2+
 b) 2+ à0+
 c) 9/2-à1/2+
 d) 6+ à1-
- 16. The first excited state of the rotational spectrum of the nucleus ²³⁸ ₉₂ U has an energy 45 keV above the ground state. Calculate the energy of the second excited state in keV.
- Calculate the energy released by the fission of a gram of U ²³⁵. The energy released per fission is 200 MeV.
- 18. Consider the four processes.

a)
$$p^+ \rightarrow n + e^+ + \nu_e$$

b) $\Lambda^0 \rightarrow p^+ + e^+ + \nu_e$
c) $\pi^+ \rightarrow e^+ + \nu_e$
d) $\pi^0 \rightarrow \gamma + \gamma$

- 19. Analyze the following reactions according to their quark content. In each case state whether the reaction is possible or not.
 - a) $\Omega^- \rightarrow \lambda^0 + K^- + p$ b) $\Xi^- \rightarrow \lambda^0 + \pi^$ c) $K^+ \rightarrow \pi^0 + \pi^-$

 $(4 \times 3 = 12 \text{ Weightage})$
