22P309	(Pages: 2)	Name:
		Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY3 E05 - EXPERIMENTAL TECHNIQUES

(Physics)

(2019 Admission onwards)

Time: 3 Hours Maximum: 30 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

- 1. How do getter ion pump works?
- 2. Write a note on resistive heating technique.
- 3. Explain the term sputtering yield.
- 4. What is a cascade accelerator?
- 5. What is ion implantation technique?
- 6. What is the principle of Neutron activation analysis technique?
- 7. What are different parts of X Ray Diffractometer?
- 8. How will you calculate grain size of the material from XRD pattern?

 $(8 \times 1 = 8 \text{ Weightage})$

Section B

Answer any two questions. Each question carries 5 weightage.

- 9. What do you mean by Vacuum accessories? Explain the working of liquid nitrogen traps and sorption traps with a neat diagram. How are they useful in attaining better vacuum?
- 10. Describe the optical interference methods for determining the thickness of thin films.
- 11. Differentiate between electron synchrotron and proton synchrotron.
- 12. Explain General experimental arrangement for Elemental Analytical Method.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. Determine the pumpdown time for a chamber of 1.5m diameter and 0.6m height pumped by a rotary pump with a speed of 2000 litres/min to attain a pressure of 10^{-1} torr, 10^{-2} torr and 10^{-3} torr.
- 14. What are vacuum gauges? Explain the working of Pirani gauge.
- 15. Discuss in detail, Interference filters.
- 16. Differentiate between Electron impact ionization and Ion impact ionization.
- 17. Explain Rutherford backscattering technique for elemental analysis.

- 18. Explain PIXE technique for elemental analysis.
- 19. The Bragg's angle for (220) reflection from nickel (fcc) is 38.2° when x-rays of wavelength 1.54Å are employed in a diffraction experiment. Determine the lattice parameter of nickel.

 $(4 \times 3 = 12 \text{ Weightage})$
