\qquad
\qquad

THIRD SEMESTER B.Voc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC21U SDC3 PT08 - PROBABILITY THEORY
(Information Technology)
(2021 Admission onwards)
Time : 2.00 Hours
Maximum : 60 Marks
Credit : 3
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Define equally likely events.
2. Two unbiased dice are thrown. Find the probability that the product of the numbers coming up is 12 .
3. What are the two types of random variables?
4. Define probability density function.
5. State the properties of probability density function.
6. If the cumulative distribution function of X is $F(x)$, find the cumulative distribution function of $Y=a X$
7. Mention any two properties of expectation.
8. List any two properties of variance.
9. State any two properties of mgf.
10. Define characteristic function of a random variable.
11. Define statistical independence of two random variables.
12. Define conditional expectation.
(Ceiling: 20 Marks)
Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. Let A and B be two events in a sample space. Show that
$P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A)+P(B)$.
14. Given $P(A)=0.30, P(B)=0.78$ and $P(A \cap B)=0.16$. Find
(i) $P(A \cup B)$ (ii) $P\left(A^{c} \cap B\right)$ (iii) $P(A \cup B)^{c}$.
15. Let A and B be two events such that, $P(A \cup B)=0.8, P(A)=0.4$ and $P(A \cap B)=0.3$, then $P\left(A \cap B^{c}\right)$.
16. Distinguish between skewness and kurtosis.
17. If the joint pdf of $\mathrm{X} \& \mathrm{Y} f(x, y)=k x(y-x), 0<x<4 ; 4<y<8$, find the value of k
18. Explain how you can get the joint p.d.f from the marginal and conditional p.d.f's?
19. Give an example to show that pairwise independence does not imply mutual independence.
(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.
20. (i) State and prove Baye's theorem.
(ii) Two urns I and II contain respectively 3 white and 2 black balls, 2 white and 4 black balls. One ball is transferred from urn I to urn II and then one is drawn from the latter. It happens to be white. What is the probability that the transferred ball was white?
21. Item Let X be a random variable with pdf:
$f(x)= \begin{cases}k x, & 0<x<1 \\ 0, & \text { elsewhere } .\end{cases}$
(i) Find k .
(ii) Obtain the pdf of $Y=e^{-X}$.

$$
(1 \times 10=10 \text { Marks })
$$

