\qquad
\qquad

THIRD SEMESTER B.Voc. DEGREE EXAMINATION, NOVEMBER 2023

(Information Technology)
CC18U GEC3 ST08 - PROBABILITY DISTRIBUTIONS
(2018 to 2020 Admissions - Supplementary)
Time: Three Hours
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark.
Fill in the blanks:

1. X is a Poisson random variable with mean 5 . Then $\mathrm{V}(\mathrm{X})=$ \qquad
2. Binomial distribution $B(n, p)$ is symmetric when $p=$ \qquad
3. In the expansion of $M_{x}(t)$ the coefficient of $\frac{t^{r}}{r!}$ is \qquad
4. For a normal distribution, $\beta_{1}=\cdots$
5. The propounder of CLT for i.i.d random variables is \qquad
Write true or false:
6. Moment generating function exists for all distributions.
7. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0$ implies that X and Y are independent.
8. Normal curve is assymetric.
9. Gamma distribution possesses lack of memory property.
10. If $X \sim N\left(\mu, \sigma^{2}\right)$, then $\mu_{4}=3 \sigma^{2}$.
(10 $\times 1=10$ Marks)

PART B

Answer any eight questions. Each question carries 2 marks.
11. Define characteristic function of a random variable.
12. List the properties of mathematical expectation.
13. Define marginal density.
14. In a binomial distribution consisting of 5 independent trails, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter ' p ' of the distribution.
15. Define joint probability mass function.
16. Define distribution function of bivariate random variable.
17. Obtain the mean of a continuous uniform distribution.
18. Define moment measures of skewness.
19. Show that m.g.f of a sum of n independent random variables is equal to the product of their m.g.f's.
20. Define standard normal distribution.
21. Define beta distribution of first kind.
22. Define convergence in probability.
($8 \times 2=16$ Marks)
PART C
Answer any six questions. Each question carries 4 marks.
23. Establish the relationship between raw moments and central moments.
24. A coin is tossed until a head appears. What is the expectation of the number of tosses required?
25. State and prove Cauchy-Schwartz inequality.
26. State and prove multiplication theorem on expectation.
27. State and prove lack of memory property.
28. Find K so that $f(x)=\left\{\begin{array}{c}k\left(x^{2}+y^{2}\right), 0 \leq x \leq 1,1 \leq y \leq 4 \\ 0, \text { else where }\end{array}\right.$ will be a bivariate probability density function.
29. A random variable X has probability mass function $f(x)=2^{-x}, x=1,2,3, \ldots$.. Find its mean and variance.
30. State the chief characteristics of normal distribution.
31. Define Gamma distribution. Obtain its moment generating function.
($6 \times 4=24$ Marks)
PART D
Answer any two questions. Each question carries 15 marks.
32. If μ_{r} is the $\mathrm{r}^{\text {th }}$ central moment of the binomial distribution $\mathrm{B}(\mathrm{n}, \mathrm{p})$ prove that $\mu_{r+1}=\mathrm{pq}\left[\frac{d \mu_{r}}{d p}+\mathrm{nr} \mu_{r-1}\right]$. Hence obtain μ_{2}.
33. (a) Define conditional mean and variance.
(b) If the joint probability mass function of X and Y is $f(x, y)=\frac{x+3 y}{24}, x=1,2 y=1,2$. Find $\mathrm{E}\{\mathrm{X} / \mathrm{Y}=2\}$ and $\operatorname{Var}\{\mathrm{X} / \mathrm{Y}=2\}$.
34. (a) State and Prove Bernoulli’s weak law of large numbers.
(b) State Lideberg - Levy CLT.
35. (a) State and prove Chebychev's inequality.
(b) If $\mathrm{E}(\mathrm{X})=3, \mathrm{E}\left(\mathrm{X}^{2}\right)=13$, use chebychev's inequality to find a lower bound for $\mathrm{P}(-2<\mathrm{X}<8)$.

$$
\text { (} 2 \times 15=30 \text { Marks })
$$

