21U5110S
 \qquad

FIFTH SEMESTER B.Voc. DEGREE EXAMINATION, NOVEMBER 2023 (CUCBCSS- UG)

ANALYSIS AND O

 (Information Technology)(2018 to 2020 Admissions - Supplementary/Improvement)
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark.

1. What is absolute error?
2. What do you mean by floating point system? Give an example
3. Give an example for transcendental equation.
4. Using bisection method find first two iterations for the root of the equation

$$
x^{3}-9 x+1=0
$$

5. Write Newton's forward difference formula.
6. Define the shift operator E
7. Write the relation E and Δ.
8. Define slack variable.
9. State True or False: An assignment problem is a special type of transportation problem.
10. What do you mean by differences of a polynomial?

PART B

Answer any eight questions. Each question carries 2 marks.
11. What is the relation between divided differences and forward differences?
12. Write $\Delta^{n}\left(y_{0}\right)$ in terms of y .
13. Prove that $\nabla=1-E^{-1}$.
14. Use the method of false position to obtain the second approximation of a root

$$
x^{3}+x-1=0
$$

15. Prepare the divided difference table for the following data

x	$:$	1	3	4	6	10
$\mathrm{f}(\mathrm{x})$	$:$	0	18	58	180	920

16. Evaluate $\int_{0}^{5} \frac{1}{4 x+5} d x$ using Simpson's $\frac{1}{3}$ rule taking $h=0.5$.
17. Explain Newton-Raphson method.
18. Write down the relationship between primal and dual problem in LPP.
19. Find the dual of Maximize $Z=x_{1}-x_{2}+3 x_{3}$

Subject to the constraints $x_{1}+x_{2}-x_{3} \leq 10, x_{1}-x_{3} \leq 2 . \quad x_{1}, x_{2}, x_{3} \geq 0$
21. What is Big M method?
22. State the difference between transportation problem and assignment problem
($8 \times 2=16$ Marks $)$

PART C

Answer any six questions. Each question carries 4 marks.
23. Find the positive root of the equation $2 x=\cos x+3$, Correct to three decimal places using fixed point iteration method.
24. Show that (i) $\Delta=\nabla E$. (ii) $\delta=E^{\frac{1}{2}}-E^{-\frac{1}{2}}$.
25. Using Lagrange's interpolation formula, find the form of the function $y(x)$ from the following table.

$$
\begin{array}{llllll}
\mathrm{x} & : & -2 & -1 & 2 & 3 \\
\mathrm{y} & : & -12 & -8 & 3 & 5
\end{array}
$$

26. Form the Taylor's series for $\mathrm{y}(\mathrm{x})$. Find $\mathrm{y}(0.1)$ correct to four decimal places if $\mathrm{y}(\mathrm{x})$ satisfies

$$
y^{\prime}=1+x y, y=1 \text { when } x=0
$$

27. Solve the initial value $y^{\prime}=x-y^{2}$; and $y(0)=0$ to find $y(0.8)$, using Picard's method.
28. Determine the value of y when $\mathrm{x}=0.1$ given that $y(0)=1$ and $y^{I}=x^{2}+y$ using Euler's method taking $h=0.05$ in two steps.
29. Using divided difference formula, find the polynomial function satisfying the following data

$$
\begin{array}{llllllc}
\mathrm{x} & : & -4 & -1 & 0 & 2 & 5 \\
\mathrm{y} & : & 1245 & 33 & 5 & 9 & 1335
\end{array}
$$

Hence find $f(1)$.
30. Explain the assignment problem.
31. Find an initial basic feasible solution by Vogel's approximation method.

	To			Availability
From	16	19	12	14
	22	13	19	16
	14	28	8	12
Requirement	10	15	17	

PART D

Answer any two questions. Each question carries 15 marks.
32. Solve using Crout's method:

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

33. Evaluate $\int_{0}^{2} \frac{1}{1+x^{3}} d x$ using
(a) Trapezoidal rule taking $\mathrm{h}=0.5$.
(b) Simpson's $\frac{1}{3}$ rule taking $\mathrm{h}=0.5$.
(c) Simpson's $\frac{3}{8}$ rule taking $\mathrm{h}=0.5$.
34. (a) Use fourth order Runge - kutta method with $\mathrm{h}=0.2$ to find the value of y at $\mathrm{x}=0.2$,

$$
\mathrm{x}=0.4 \text { and } \mathrm{x}=0.6 \text { given } \frac{d y}{d x}=1+y^{2} ; y(0)=0
$$

(b) Given $\frac{d y}{d x}=1+y^{2} ; y(0)=0$. Compute $y(0.8)$ using Milne's method.
35. Obtain an optimal solution to minimize cost.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
O_{1}	19	30	50	10	7
O_{2}	70	30	40	60	9
O_{3}	40	8	70	20	18
Demand	5	8	7	14	

