21U5110S

(Pages: 3

FIFTH SEMESTER B.Voc. DEGREE EX (CUCBCSS-

CC18U GEC5 OT15 - NUMERICAL ANALYSI

(Information Tec

(2018 to 2020 Admissions – Sup

Time: Three Hours

PART A

Answer *all* questions. Each question carries 1 mark.

- 1. What is absolute error?
- 2. What do you mean by floating point system? Give an example.
- 3. Give an example for transcendental equation.
- 4. Using bisection method find first two iterations for the root of the equation

$x^3 - 9x + 1 = 0.$

- 5. Write Newton's forward difference formula.
- 6. Define the shift operator E
- 7. Write the relation E and Δ .
- 8. Define slack variable.
- 9. State True or False: An assignment problem is a special type of transportation problem.
- 10. What do you mean by differences of a polynomial?

PART B

Answer any *eight* questions. Each question carries 2 marks.

- 11. What is the relation between divided differences and forward differences?
- 12. Write $\Delta^n(y_0)$ in terms of y.
- 13. Prove that $\nabla = 1 E^{-1}$.
- 14. Use the method of false position to obtain the second approximation of a root
- 15. Prepare the divided difference table for the following data

Х	:	1	3	4	6	10	
f(x)	:	0	18	58	180	920	
6 Eval	uate	ر ⁵ _	$\frac{1}{dr}$	using	Simpsor	r_{s}^{1} rule	- 1

- 16. Evaluate $\int_0^5 \frac{1}{4x+5} dx$ using Simpson's $\frac{1}{3}$ rule taking h = 0.5.
- 17. Explain Newton-Raphson method.

3)	Name:
	Reg: No:
XAMINATION	, NOVEMBER 2023
S- UG)	
IS AND OPTIM	IIZATION TECHNIQUES
chnology)	
oplementary/Imp	rovement)
	Maximum: 80 Marks

$(10 \times 1 = 10 \text{ Marks})$

 $x^3 + x - 1 = 0.$

Turn Over

- 18. What is Newton's general interpolation formula?
- 19. Write down the relationship between primal and dual problem in LPP.
- 20. Find the dual of Maximize $Z = x_1 x_2 + 3x_3$

Subject to the constraints $x_1 + x_2 - x_3 \le 10$, $x_1 - x_3 \le 2$. $x_1, x_2, x_3 \ge 0$.

- 21. What is Big M method?
- 22. State the difference between transportation problem and assignment problem.

 $(8 \times 2 = 16 \text{ Marks})$

PART C

Answer any six questions. Each question carries 4 marks.

23. Find the positive root of the equation $2x = \cos x + 3$, Correct to three decimal places using fixed point iteration method.

24. Show that (i) $\Delta = \nabla E$. (ii) $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$.

25. Using Lagrange's interpolation formula, find the form of the function y(x) from the following table.

x : -2 -1 2 3

- v : -12 -8 3 5
- 26. Form the Taylor's series for y(x). Find y(0.1) correct to four decimal places if y(x) satisfies

y' = 1 + xy, y = 1 when x = 0.

- 27. Solve the initial value $y' = x y^2$; and y(0) = 0 to find y(0.8), using Picard's method.
- 28. Determine the value of y when x = 0.1 given that y(0) = 1 and $y^{I} = x^{2} + y$ using Euler's method taking h = 0.05 in two steps.
- 29. Using divided difference formula, find the polynomial function satisfying the following data

Х	:	-4	-1	0	2	5
у	:	1245	33	5	9	1335
		1.0(1)				

Hence find f(1).

- 30. Explain the assignment problem.
- 31. Find an initial basic feasible solution by Vogel's approximation method.

		Availability		
	16	19	12	14
From	22	13	19	16
	14	28	8	12
Requirement	10	15	17	

 $(6 \times 4 = 24 \text{ Marks})$

PART D

32. Solve using Crout's method:

$$x + y + z = 9,$$

$$2x - 3y + 4z = 13,$$

$$3x + 4y + 5z = 40.$$

33. Evaluate
$$\int_{0}^{2} \frac{1}{1+x^{3}} dx$$
 using
(a) Trapezoidal rule taking h = 0.5.
(b) Simpson's $\frac{1}{3}$ rule taking h = 0.5.
(c) Simpson's $\frac{3}{8}$ rule taking h = 0.5.

x = 0.4 and x = 0.6 given
$$\frac{dy}{dx} = 1 + y^2$$
;
(b) Given $\frac{dy}{dx} = 1 + y^2$; $y(0) = 0$. Compute

35. Obtain an optimal solution to minimize cost.

	D	1 D ₂	D ₃	D ₄	Supply
O ₁	19	30	50	10	7
O ₂	70) 30	40	60	9
O ₃	40) 8	70	20	18
Dema	nd 5	8	7	14	

(3)

21U5110S

Answer any two questions. Each question carries 15 marks.

34. (a) Use fourth order Runge – kutta method with h = 0.2 to find the value of y at x = 0.2, y(0) = 0.

te y(0.8) using Milne's method.

 $(2 \times 15 = 30 \text{ Marks})$