CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

DEGREE OF M. Sc. Mathematics

MASTER OF SCIENCE IN MATHEMATICS

(CHOICE BASED CREDIT AND SEMESTER SYSTEM FOR UNDERGRADUATE CURRICULUM)

UNDER THE FACULTY OF SCIENCE

SYLLABUS

(FOR THE STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2019-20 ONWARDS) BOARD OF STUDIES IN MATHEMATICS (PG)
CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA - 680125, KERALA, INDIA

Board of Studies in Mathematics

Sl. No.	Name	Official Address
1	Ms. Tintumol Sunny (Assistant Professor, HOD)	Department of Mathematics Christ College, Irinjalakuda
2	Dr. Seena V (Assistant Professor)	Department of Mathematics Christ College, Irinjalakuda
3	Dr. Shinto K G (Assistant Professor)	Department of Mathematics Christ College, Irinjalakuda
4	Dr. Aparna Lakshmanan (Assistant Professor)	Department of Mathematics St. Xavier's College for Woman, Aluva
5	Dr. Bijumon R (Assistant Professor)	Department of Mathematics M G College Iritty, Kannur
6	Dr. Sunil Jacob John (Professor)	Department of Mathematics National institute of Technology, Calicut
7	Dr. Shinoj T K (Associate Professor)	Department of Mathematics National institute of Technology, Calicut
8	Dr. Joju K T (Associate Professor)	Department of Mathematics Prajyothi Nikethan College, Pudukkad
9	Fr. Dr. Vincent N S (Assistant Professor)	Department of Mathematics Christ College, Irinjalakuda
10	Mr. Naveen V V (Ad-hoc Faculty)	Department of Mathematics Christ College, Irinjalakuda
11	Ms. Niveditha N S (Ad-hoc Faculty)	Department of Mathematics Christ College, Irinjalakuda
12	Mr. Jomesh Jose K (Ad-hoc Faculty)	Department of Mathematics Christ College, Irinjalakuda
13	Ms. Anjaly V A (Ad-hoc Faculty)	Department of Mathematics Christ College, Irinjalakuda

Syllabus Structure

SEMESTER 1

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Audit Course
MTH1C01	Algebra- I	4	5	core
MTH1C02	Linear Algebra	4	5	core
MTH1C03	Real Analysis I	4	5	core
MTH1C04	Discrete Mathematics	4	5	core
MTH1C05	Number Theory	4	5	core
MTH1A01	${\text { Ability Enhancement Course }{ }^{a}}^{4}$	4	0	Audit Course

SEMESTER 2

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/ Elective
MTH2C06	Algebra- II	4	5	core
MTH2C07	Real Analysis II	4	5	core
MTH2C08	Topology	4	5	core
MTH2C09	ODE \& calculus of variations	4	5	core
MTH2C10	Operations Research	4	5	core
	Professional Competency Course ${ }^{a}$	4	0	Audit Course

SEMESTER 3

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Elective
MTH 3C11	Multivariable Calculus \& Geometry	4	5	core
MTH3C12	Complex Analysis	4	5	core
MTH3C13	Functional Analysis	4	5	core
MTH3C14	PDE \& Integral Equations	4	5	core
	Elective I *	3	5	Elec.

SEMESTER 4

Course Code	Title of the Course	No. of Credits	Work Load Hrs./week	Core/Elective
MTH4C15	Advanced Functional Analysis	4	5	Core
	Elective II**	3	5	Elec.
	Elective III**	3	5	Elec.
	Elective IV**	3	5	Elec.
MTH4P01	Project	4	5	Core
MTH4 V01	Viva Voce	4		Core

Evaluation of these courses will be as per the latest PG regulations.

* This Elective is to be selected from list of elective courses in third semester.
** This Elective is to be selected from list of elective courses in fourth semester

List of Elective Courses in Third Semester

1. MTH3E01 Coding theory
2. MTH3E02 Cryptography
3. MTH3E03 Measure \& Integration
4. MTH3E04 Probability Theory

List of Elective Courses in Fourth Semester

1. MTH4E05 Advanced Complex Analysis
2. MTH4E06 Algebraic Number Theory
3. MTH4E07 Algebraic Topology
4. MTH4E08 Commutative Algebra
5. MTH4E09 Differential Geometry
6. MTH4E10 Fluid Dynamics
7. MTH4E11 Graph Theory
8. MTH4E12 Representation Theory
9. MTH4E13 Wavelet Theory

ABILITY ENHANCEMENT COURSE(AEC)

Successful fulfilment of any one of the following shall be considered as the completion of AEC. (i) Internship, (ii) Class room seminar presentation, (iii) Publications, (iv) Case study analysis, (v) Paper presentation, (vi) Book reviews. A student can select any one of these as AEC.

Internship: Internship of duration 5 days under the guidance of a faculty in an institution/department other than the parent department. A certificate of the same should be obtained and submitted to the parent department.

Class room seminar: One seminar of duration one hour based on topics in mathematics beyond the prescribed syllabus.

Publications: One paper published in conference proceedings/ Journals. A copy of the same should be submitted to the parent department.

Case study analysis: Report of the case study should be submitted to the parent department.
Paper presentation: Presentation of a paper in a regional/ national/ international seminar/conference. A copy of the certificate of presentation should be submitted to the parent department.

Book Reviews: Review of a book. Report of the review should be submitted to the parent department.

PROFESSIONAL COMPETENCY COURSE (PCC)

A student can select any one of the following as Professional Competency course:

1. Technical writing with IATEX.
2. Scientific Programming with Scilab.
3. Scientific Programming with Python.

EVALUATION AND GRADING

The evaluation scheme for each course except audit courses shall contain two parts.(a)Internal
Evaluation:

20\% Weightage

(b) External Evaluation: 80\% Weightage

Both the Internal and the External evaluation shall be carried out using direct grading system as per the general guidelines of the University. Internal evaluation must consist of
(i) 2 tests (ii) one assignment (iii) one seminar and (iv) attendance, with weightage 2 fortests (together) and weightage 1 for each other component.

Each of the two internal tests is to be a 10 -weightage examination of duration one hour in direct grading. The average of the final grade points of the two tests can be used to obtain the final consolidated letter grade for tests (together) according to the following table.

Average grade point (2 tests)	Grade for Tests	Grade Point for Tests
4.5 to 5	A+	5
3.75 to 4.49	A	4
3 to 3.74	B	3
2 to 2.99	C	2
Below 2	D	1
Absent	E	0

Table 1: Internal Grade Calculation: Examples

Tests	Grade Point of Test1	Grade Point of Test2	Average Test Grade Point	Test Grade	Test Grade Point	Test Weightage	Test Weighted Grade Point
Student1	4.8	3.5	4.15	A	4	2	8
Student2	5	4.8	4.9	A+	5	2	10
Student3	2.3	4.7	3.5	B	3	2	6

Assignment	Assignment Grade	Assignmen tGrade Point	Assignment Weightage	Assignment Weighted Grade Point
Student1	A+	5	$\mathbf{1}$	5
Student2	A	4	$\mathbf{1}$	4
Student3	C	2	$\mathbf{1}$	2

Seminar	Seminar Grade	Seminar Grade Point	Seminar Weightage	Seminar Weighted Grade Point
Student1	B	3	$\mathbf{1}$	3
Student2	A+	5	$\mathbf{1}$	5
Student3	D	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Attendance	Attendance Grade	Attendance Grade Point	Attendance Weightage	Attendance Weighted Grade Point
Student1	A+	5	$\mathbf{1}$	5
Student2	A+	5	$\mathbf{1}$	5
Student3	C	2	$\mathbf{1}$	$\mathbf{2}$

Consolidation	Total Weighte dGrade Point	Total Weightage	Total Internal Grade Point	Final Internal Grade
Student1	21	5	$21 / 5=4.2$	$\mathrm{~A}+$
Student2	24	5	$24 / 5=4.8$	O
Student3	11	5	$11 / 5=2.2$	F

PROJECT

The Project Report (Dissertation) should be self-contained. It should contain table of con- tents, introduction, at least three chapters, bibliography and index. The main content may be of length not less than 30 pages in the A4 format with one and half line spacing. The project report should be prepared preferably in LATEX. There must be a project presentation by the student followed by a viva voce. The components and weightage of External and Internal valuation of the Project are as follows:

Components	External(weightage)	Internal (weightage)
Relevance of the topic \& statement of problem	4	1
Methodology \& analysis	4	1
Quality of Report \& Presentation	4	1
Viva Voce	8	2
Total weightage	20	5

The external project evaluation shall be done by a Board consisting two External Examiners. The Grade Sheet is to be consolidated and must be signed by the External Examiners.

MTH4V01 VIVA VOCE EXAMINATIONS

The Comprehensive Viva Voce is to be conducted by a Board consisting of two External Examiners. The viva voce must be based on the core papers of the entire programme. There should be questions from at least one course of each of the semesters I, II, and III. Total weightage of viva voce is 15 . The same Board of two External Examiners shall conduct both the project evaluation and the comprehensive viva voce examination. The Board of Examiners shall evaluate at most 10 students per day.

Question Paper Pattern for the written examinations

For each course there will be an external examination of duration 3 hours. The valuation willbe done by Direct Grading System. Each question paper will consist of 8 short answer questions each of weightage 1 , 9 paragraph type questions each of weightage 2 , and 4 essay type questions each of weightage 5 . All short answer questions are to be answered while 6 paragraph type questions and 2 essay type questions are to be answered with a total weightage of 30 . The questions are to be evenly distributed over the entire syllabus (see the model question paper). More specifically, each question paper consists of three parts viz Part A, Part B and Part C. Part A will consist of 8 short answer type questions each of weightage 1 of which at least 2 questions should be from each unit. Part B has 3 units based on the 3 modules of each course. From each module there will be three questions of which two should be answered. Part C will consist of four essay type questions each of weightage 5 of which 2 should be answered. These questions should cover the entire syllabus of the course.

SEMESTER 1

MTH1C01 - ALGEBRA 1

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: JOHN B. FRALEIGH, A FIRST COURSE IN ABSTRACT ALGEBRA ($7^{\text {th }}$ Edn.), Pearson Education Inc., 2003.

Module 1

Plane Isometries, Direct products \& finitely generated Abelian Groups, Factor Groups, Factor-Group Computations and Simple Groups, Group action on a set, Applications of G- set to counting [Sections 12, $11,14,15,16,17]$.

Module 2

Isomorphism theorems, Series of groups, (Omit Butterfly Lemma and proof of the Schreier Theorem), Sylow theorems, Applications of the Sylow theory, Free Groups (Omit Another look at free abelian groups) [Sections 34, 35, 36, 37, 39].

Module 3

Group Presentations, Rings of polynomials, Factorization of polynomials over a field, Non-Commutative examples, Homomorphism and factor rings [sections 40, 22, 23, 24, 26].

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998.
[2] Dummit and Foote: Abstract algebra (3rd edn.); Wiley India; 2011.
[3] P.A. Grillet: Abstract algebra (2nd edn.); Springer; 2007
[4] I.N. Herstein: Topics in Algebra (2nd Edn); John Wiley \& Sons, 2006.
[5] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987.
[6] N. Jacobson: Basic Algebra-Vol. I; Hindustan Publishing Corporation (India), Delhi;1991.
[7] T.Y. Lam: Exercises in classical ring theory (2nd edn); Springer; 2003.
[8] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010.
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012.
[10] S. M. Ross: Topics in Finite and Discrete Mathematics; Cambridge; 2000.
[11] J. Rotman: An Introduction to the Theory of Groups (4th edn.); Springer, 1999.

MTH1C02 - LINEAR ALGEBRA

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: HOFFMAN K. and KUNZE R., LINEAR ALGEBRA (2nd Edn.), Prentice- Hall of India, 1991. Module 1

Vector Spaces \& Linear Transformations [Chapter 2 Sections 2.1-2.4; Chapter 3, Sections 3.1 to 3.3 from the text]

Module 2

Linear Transformations (continued) and Elementary Canonical Forms [Chapter 3 Sections 3.4-3.7; Chapter 6, Sections 6.1 to 6.4 from the text]

Module 3

Elementary Canonical Forms (continued), Inner Product Spaces [Chapter 6, Sections 6.6\& 6.7; Chapter 8, Sections $8.1 \& 8.2$ from the text]

References

[1] P.R. Halmos: Finite Dimensional Vector spaces; Narosa Pub House, New Delhi; 1980.
[2] A. K. Hazra: Matrix: Algebra, Calculus and generalized inverse- Part I; Cambridge International Science Publishing; 2007.
[3] I. N. Herstein: Topics in Algebra; Wiley Eastern Ltd Reprint; 1991.
[4] S. Kumaresan: Linear Algebra-A Geometric Approach; Prentice Hall of India; 2000.
[5] S. Lang: Linear Algebra; Addison Wesley Pub. Co. Reading, Mass; 1972.
[6] S. Maclane and G. Bikhrkhoff: Algebra; Macmillan Pub Co NY; 1967.
[7] N. H. McCoy and R. Thomas: Algebra; Allyn Bacon Inc NY; 1977.
[8] R. R. Stoll and E.T. Wong: Linear Algebra; Academic Press International Edn; 1968.
[9] G. Strang: linear algebra and its applications (4th edn.); Cengage Learning; 2006.

MTH1C03 - REAL ANALYSIS 1

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS (3 ${ }^{\text {rd }}$ Edn.), Mc. Graw-Hill, 1986.

Module 1

Basic Topology: Finite, Countable and Uncountable sets Metric Spaces, Compact Sets, Perfect Sets, Connected Sets. Continuity - Limits of function, Continuous functions, Continuity and compactness, continuity and connectedness, Discontinuities, Monotonic functions, Infinite limits and Limits at Infinity [Chapter 2 \& Chapter 4].

Module 2

Differentiation The derivative of a real function, Mean Value theorems, the continuity of Derivatives, L Hospitals Rule, Derivatives of Higher Order, Taylors Theorem, Differentiation of Vector valued functions. The Riemann Stieltjes Integral, - Definition and Existence of the integral, properties of the integral, Integration and Differentiation [Chapter 5 \& Chapter 6 upto and including 6.22].

Module 3

The Riemann Stieltjes Integral (Continued) - Integration of Vector vector-valued Functions, Rectifiable curves. Sequences and Series of Functions - Discussion of Main problem, Uniform convergence, Uniform convergence and continuity, Uniform convergence and Integration, Uniform convergence and Differentiation. Equi-continuous Families of Functions, The Stone Weierstrass Theorem [Chapters 6 (from 6.23 to 6.27) \& Chapter 7 (up-to and including 7.27 only)].

References

[1] H. Amann and J. Escher: Analysis-I; Birkhuser; 2006.
[2] T. M. Apostol: Mathematical Analysis (2nd Edn.); Narosa; 2002.
[3] R. G. Bartle: Elements of Real Analysis (2nd Edn.); Wiley International Edn.; 1976.
[4] R. G. Bartle and D.R. Sherbert: Introduction to Real Analysis; John Wiley Bros; 1982.
[5] J. V. Deshpande: Mathematical Analysis and Applications- an Introduction; AlphaScience International; 2004.
[6] V. Ganapathy Iyer: Mathematical analysis; Tata Mc Graw Hill; 2003.
[7] R. A. Gordon: Real Analysis- a first course (2nd Edn.); Pearson; 2009.
[8] F. James: Fundamentals of Real analysis; CRC Press; 1991.
[9] A. N. Kolmogorov and S. V. Fomin: Introductory Real Analysis; Dover PublicationsInc; 1998.
[10] S. Lang: Under Graduate Analysis (2nd Edn.); Springer-Verlag; 1997.
[11] M. H. Protter and C. B. Moray: A first course in Real Analysis; Springer VerlagUTM; 1977.
[12] C. C. Pugh: Real Mathematical Analysis, Springer; 2010.
[13] K. A. Ross: Elementary Analysis- The Theory of Calculus (2nd edn.); Springer; 2013.
[14] A. H. Smith and Jr. W.A. Albrecht: Fundamental concepts of analysis; PrenticeHall of India; 1966
[15] V. A. Zorich: Mathematical Analysis-I; Springer; 2008.

MTH1C04 - DISCRETE MATHEMATICS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT 1: R. BALAKRISHNAN and K. RANGANATHAN, A TEXT BOOK OF GRAPH THEORY, Springer-Verlag New York, Inc., 2000.

TEXT 2: K. D JOSHI, FOUNDATIONS OF DISCRETE MATHEMATICS, New Age International (P) Limited, New Delhi, 1989.

TEXT 3: PETER LINZ, AN INTRODUCTION TO FORMAL LANGUAGES AND AU-TOMATA (2 $2^{\text {nd }}$ Edn.), Narosa Publishing House, New Delhi, 1997.

Module 1

Order Relations, Lattices; Boolean Algebra Definition and Properties, BooleanFunctions. [TEXT 2 Chapter 3 (section. 3 (3.1-3.11), chapter 4 (sections 1\& 2)].

Module 2

Basic concepts, Subgraphs, Degree of vertices, Paths and connectedness, Automorphismof a simple graph, Operations on graphs, Vertex cuts and Edge cuts, Connectivity and Edge connectivity, Trees-Definition, Characterization and Simple properties, Eulerian graphs, Planar and Non planar graphs, Euler formula and
its consequences, $K 5$ and $K 3,3$ are non - planar graphs, Dual of a plane graph. [TEXT 1 Chapter 1 Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, Chapter 3 Sections 3.1, 3.2, Chapter 4 Section 4.1(up-to and including 4.1.10), Chapter 6; Section 6.1(up-to and including 6.1.2), Chapter 8; Sections 8.1 (up-to and including 8.1.7), 8.2 (up-to and including 8.2.7), 8.3, 8.4.]

Module 3

Automata and Formal Languages: Introduction to the theory of Computation: Three basic concepts, some applications, Finite Automata: Deterministic finite accepters, Non deterministic accepters, Equivalence of deterministic and nondeterministic finite accepters. [TEXT 3 - Chapter 1 (sections $1.2 \& 1.3$); Chapter 2 (sections 2.1, $2.2 \& 2.3$)]

References

[1] J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.
[2] J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.
[3] S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatorics;Hindustan Book Agency; 2009.
[4] J. A. Clalrk: A first look at Graph Theory; World Scientific; 1991.
[5] Colman and Busby: Discrete Mathematical Structures; Prentice Hall of India; 1985.
[6] C. J. Dale: An Introduction to Data base systems (3rd Edn.); Addison Wesley PubCo., Reading Mass; 1981.
[7] R. Diestel: Graph Theory (4th Edn.); Springer-Verlag; 2010
[8] S. R. Givant and P. Halmos: Introduction to boolean algebras; Springer; 2009.
[9] R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introducetion(5th edn.); Pearson; 2007.
[10] J. L. Gross: Graph theory and its applications (2nd edn.); Chapman \& Hall/CRC;2005.
[11] F. Harary: Graph Theory; Narosa Pub. House, New Delhi; 1992.
[12] D. J. Hunter: Essentials of Discrete Mathematics (3rd edn.); Jones and BartlettPublishers; 2015.
[13] A. V. Kelarev: Graph Algebras and Automata; CRC Press; 2003
[14] D. E. Knuth: The art of Computer programming -Vols. I to III; Addison Wesley PubCo., Reading Mass; 1973.
[15] C. L. Liu: Elements of Discrete Mathematics (2nd Edn.); Mc Graw Hill InternationalEdns. Singapore; 1985.
[16] L. Lovsz, J. Pelikn and K. Vesztergombi: Discrete Mathematics: Elementary andbeyond; Springer; 2003.
[17] J. G. Michaels and K.H. Rosen: Applications of Discrete Mathematics; McGraw-Hill International Edn. (Mathematics \& Statistics Series); 1992.
[18] Narasing Deo: Graph Theory with applications to Engineering and Computer Sci-ence; Prentice Hall of India; 1987.
[19] W. T. Tutte: Graph Theory; Cambridge University Press; 2001
[20] D. B. West: Introduction to graph theory; Prentice Hall; 2000.
[21] R. J. Wilson: Introduction to Graph Theory; Longman Scientific and Technical Essex(co-published with John Wiley and sons NY); 1985.

MTH1C05 - NUMBER THEORY

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT 1: APOSTOL T.M., INTRODUCTION TO ANALYTIC NUMBER THEORY, Narosa Publishing House, New Delhi, 1990.

TEXT 2: KOBLITZ NEAL A., COURSE IN NUMBER THEROY ANDCRYPTOG- RAPHY, Springer Verlag, New York, 1987.

Module 1

Arithmetical functions and Dirichlet multiplication; Averages of arithmetical functions[Chapter 2: sections 2.1 to 2.14, 2.18, 2.19; Chapter 3: sections 3.1 to 3.4, 3.9 to 3.12 of Text 1]

Module 2

Some elementary theorems on the distribution of prime numbers [Chapter 4: Sections 4.1 to 4.10 of Text 1]

Module 3

Quadratic residues and quadratic reciprocity law [Chapter 9: sections 9.1 to 9.8 of Text 1] Cryptography, Public key [Chapters 3; Chapter 4 sections 1 and 2 of Text 2.]

References

[1] A. Beautelspacher: Cryptology; Mathematical Association of America (Incorpo-rated); 1994
[2] H. Davenport: The higher arithmetic (6th Edn.); Cambridge Univ.Press; 1992
[3] G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; OxfordInternational Edn; 1985
[4] A. Hurwitz \& N. Kritiko: Lectures on Number Theory; Springer Verlag, Universitytext; 1986
[5] T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press; 2002
[6] D. Redmond: Number Theory; Monographs \& Texts in Mathematics No: 220; MarcelDekker Inc.;1994
[7] P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
[8] K.H. Rosen: Elementary Number Theory and its applications (3rd Edn.); AddisonWesley Pub Co.; 1993
[9] W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
[10] D.R. Stinson: Cryptography- Theory and Practice (2nd Edn.); Chapman \& Hall / CRC (214. Simon Sing: The Code Book the Fourth Estate London); 1999
[11] J. Stopple: A Primer of Analytic Number Theory-From Pythagoras to Riemann; Cambridge Univ Press; 2003
[12] S.Y. Yan: Number Theory for Computing (2nd Edn.); Springer-Verlag; 2002.

SEMESTER 2

MTH2C06 - ALGEBRA 2

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: John B. Fraleigh: A FIRST COURSE IN ABSTRACT ALGEBRA ($7^{\text {th }}$ Edn.), Pearson Education Inc., 2003.

Module 1

Prime and Maximal Ideals, Introduction to Extension Fields, Algebraic Extensions (OmitProof of the Existence of an Algebraic Closure), Geometric Constructions. [27, 29, 31, 32]

Module 2

Finite Fields, Automorphisms of Fields, The Isomorphism Extension Theorem, Split-ting Fields, Separable Extensions. [33, 48, 49, 50, 51]

Module 3

Galois Theory, Illustration of Galois Theory, Cyclotomic Extensions, Insolvability ofthe Quintic. [53, 54, 55, 56]

References

[1] N. Bourbaki: Elements of Mathematics: Algebra I, Springer; 1998
[2] Dummit and Foote: Abstract algebra (3rd edn.); Wiley India; 2011
[3] M.H. Fenrick: Introduction to the Galois correspondence (2nd edn.); Birkhuser; 1998
[4] P.A. Grillet: Abstract algebra (2nd edn.); Springer; 2007
[5] I.N. Herstein: Topics in Algebra (2nd Edn); John Wiley \& Sons, 2006.
[6] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[7] C. Lanski: Concepts in Abstract Algebra; American Mathematical Society; 2010
[8] R. Lidl and G. Pilz Appli:ed abstract algebra(2nd edn.); Springer; 1998
[9] N.H. Mc Coy: Introduction to modern algebra, Literary Licensing, LLC; 2012
[10] J. Rotman: An Introduction to the Theory of Groups (4th edn.); Springer; 1999
[11] I. Stewart: Galois theory (3rd edn.); Chapman \& Hall/CRC; 2003

MTH2C07 - REAL ANALYSIS 2

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: H. L. Royden P. M. Fitzpatrick H.L. REAL ANAYLSIS (4th Edn.), Prentice Hallof India, 2000.

Module 1

The Real Numbers: Sets, Sequences and Functions
Chapter 1: Sigma Algebra, Borel sets Section 1.4: Proposition13
Lebesgue Measure Chapter 2: Sections 2.1, 2.2 , 2.3, 2.4, 2.5 , 2.6,2.7 up-to preposition19.
Lebesgue Measurable Functions Chapter 3: Sections 3.1, 3.2, 3.3

Module 2

Lebesgue Integration Chapter 4: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
Lebesgue Integration: Further Topics Chapter 5: Sections: 5.1, 5.2 ,5.3

Module 3

Differentiation and Integration Chapter 6: Sections 6.1, 6.2, 6.3 6.4, 6.5,6.6 The L^{p} spaces: Completeness and Approximation Chapter 7: Sections $7.1,7.2,7.3$

References

[1] K B. Athreya and S N Lahiri: Measure theory, Hindustan Book Agency, New Delhi,(2006).
[2] R G Bartle: The Elements of Integration and Lebasque Measure, Wiley (1995).
[3] S K Berberian: measure theory and Integration, The Mc Millan Company, New York,(1965).
[4] L M Graves: The Theory of Functions of Real Variable Tata McGraw-Hill Book Co(1978)
[5] P R Halmos: Measure Theory, GTM, Springer Verlag
[6] W Rudin: Real and Complex Analysis, Tata McGraw Hill, NewDelhi,2006
[7] I K Rana: An Introduction to Measure and Integration, Narosa Publishing Company,New York.
[8] Terence Tao: An Introduction to Measure Theory, Graduate Studies in Mathematics, Vol 126 AMS

MTH2C08 - TOPOLOGY

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: JOSHI, K.D., INTRODUCTION TO GENERAL TOPOLOGY (Revised Edn.), New Age International(P) Ltd., New Delhi, 1983.

Module 1

A Quick Revision of Chapter 1,2 and 3. Topological Spaces, Basic Concepts [Chapter4 and Chapter 5
Sections 1, Section 2 (excluding 2.11 and 2.12) and Section 3 only]

Module 2

Making Functions Continuous, Quotient Spaces, Spaces with Special Properties [Chap-ter 5 Section 4 and Chapter 6]

Module 3

Separation Axioms: Hierarchy of Separation Axioms, Compactness and Separation Axioms, The Urysohn Characterization of Normality, Tietze Characterization of Normality. [Chapter 7: Sections 1 to 3 and Section 4 (up to and including 4.6)]

References

[1] M.A. Armstrong: Basic Topology; Springer- Verlag New York; 1983
[2] J. Dugundji: Topology; Prentice Hall of India; 1975
[3] M. Gemignani: Elementary Topology; Addison Wesley Pub Co Reading Mass; 1971
[4] M.G. Murdeshwar: General Topology (2nd Edn.); Wiley Eastern Ltd; 1990
[5] G.F. Simmons: Introduction to Topology and Modern Analysis; McGraw-Hill Inter-national Student Edn.; 1963
[6] S. Willard: General Topology; Addison Wesley Pub Co., Reading Mass; 197

MTH2C09 - ODE AND CALCULUS OF VARIATIONS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: SIMMONS, G.F., DIFFERENTIAL EQUATIONS WITH APPLICATIONSAND HISTORICAL NOTES (3rd Edn.), New Delhi, 1974.

Module 1

Power Series Solutions and Special functions; Some Special Functions of Mathematical Physics. [Chapter 5: Sections 26, 27, 28, 29, 30, 31; Chapter 6: Sections 32, 33]

Module 2

Some special functions of Mathematical Physics (continued), Systems of First OrderEquations; Non-linear Equations [Chapter 6: Sections 34, 35: Chapter 7: Sections 37, 38, Chapter 8: Sections 40, 41, 42, 43, 44]

Module 3

Oscillation Theory of Boundary Value Problems, The Existence and Uniqueness of Solutions, The Calculus of Variations. [Chapter 4: Sections 22, 23 \& Appendix A. (Omit Section 24); Chapter 11: Sections 55, 56,57: Chapter 9: Sections 47, 48, 49]

References

[1] G. Birkhoff and G.C. Rota: Ordinary Differential Equations (3rd Edn.); Edn. Wiley\& Sons; 1978
[2] W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundaryvalue problems (2nd Edn.); John Wiley \& Sons, NY; 1969
[3] A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
[4] E.A. Coddington: An Introduction to Ordinary Differential Equations; Printice Hallof India, New Delhi; 1974
[5] R. Courant and D. Hilbert: Methods of Mathematical Physics- vol I; Wiley Eastern Reprint; 1975
[6] P.Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[7] L.S. Pontriyagin: A course in ordinary Differential Equations Hindustan Pub. Corporation, Delhi; 1967
[8] I. Sneddon: Elements of Partial Differential Equations; McGraw-Hill InternationalEdn.; 1957

MTH2C10 - OPERATIONS RESEARCH

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: K.V. MITAL; C. MOHAN., OPTIMIZATION METHODS IN OPERATIONS RESEARCH AND SYSTEMS ANALYSIS (3rd. Edn.), New Age International(P)Ltd., 1996.

Module 1

(Pre requisites: A basic course in calculus and Linear Algebra)
Convex Functions; Linear Programming [Chapter 2: Sections 11 to 12; Chapter 3: Sections 1 to 15, 17
from the text]

Module 2

Linear Programming (contd.); Transportation Problem [Chapter 3: Sections 18 to 20,22; Chapter 4

Module 3

Integer Programming; Sensitivity Analysis [Chapter 6: Sections 1 to 9; Chapter 7 Sections 1 to 10 from the text] Flow and Potential in Networks; Theory of Games [Chapter 5: Sections 1 to 4, 6 7; Chapter 12: all sections]

References

[1] R.L. Ackoff and M.W. Sasioni: Fundamentals of Operations Research; WileyEastern Ltd. New Delhi; 1991
[2] C.S. Beightler, D.T. Philiphs and D.J. Wilde: Foundations of optimization (2ndEdn.); Prentice Hall of India, Delhi; 1979
[3] G. Hadley: Linear Programming; Addison-Wesley Pub Co Reading, Mass; 1975
[4] G. Hadley: Non-linear and Dynamic Programming; Wiley Eastern Pub Co. Reading, Mass; 1964
[5] H.S. Kasana and K.D. Kumar: Introductory Operations Research-Theory andApplications; SpringerVerlag; 2003
[6] R. Panneerselvam: Operations Research; PHI, New Delhi (Fifth printing); 2004
[7] A. Ravindran, D.T. Philips and J.J. Solberg: Operations Research-Principles and Practices (2nd Edn.); John Wiley \& Sons; 2000
[8] G. Strang: Linear Algebra and Its Applications (4th Edn.); Cengage Learning; 2006
[9] Hamdy A. Taha: Operations Research- An Introduction (4th Edn.); Macmillan PubCo. Delhi; 1989

MTH2A02: TECHNICAL WRITING WITH LATEX (PCC)

Number of Credits: 4

Course Outline

1. Installation of the software IATEX
2. Understanding IATEX compilation
3. Basic Syntex, Writing equations, Matrix, Tables
4. Page Layout: Titles, Abstract, Chapters, Sections, Equation references, citation.
5. List making environments
6. Table of contents, Generating new commands
7. Figure handling, numbering, List of figures, List of tables, Generating bibliographyand index
8. Beamer presentation
9. Pstricks: drawing simple pictures, Function plotting, drawing pictures with nodes
10. Tikz: drawing simple pictures, Function plotting, drawing pictures with nodes

References

[1] L. Lamport: A Document Preparation System, User's Guide and Reference Manual, AddisonWesley, New York, second edition, 1994.
[2] M.R.C. van Dongen: IATEX and Friends, Springer-Verlag Berlin Heidelberg 2012.
[3] Stefan Kottwitz: IATEX Cookbook, Packt Publishing 2015.
[4] David F. Griffths and Desmond J. Higham: Learning LATEX (second edition), Siam 2016.
[5] George Gratzer: Practical LATEX, Springer 2015.
[6] W. Snow: TEX for the Beginner. Addison-Wesley, Reading, 1992
[7] D. E. Knuth:The TEX Book. Addison-Wesley, Reading, second edition, 1986
[8] M. Goossens, F. Mittelbach, and A. Samarin:The LATEX Companion. Addison- Wesley, Reading, MA, second edition, 2000.
[9] M. Goossens and S. Rahtz: The LATEX Web Companion: Integrating TEX, HTML, and XML. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, Reading, MA, 1999.
[10] M. Goossens, S. Rahtz, and F. Mittelbach: The IATEX Graphics Companion: Illustrating Documents with TEX and PostScript. Addison-Wesley Series on Tools and Techniques for Computer Typesetting. Addison-Wesley, New York, 1997.

MTH2A03: PROGRAMMING WITH SCILAB (PCC)

Number of Credits: 4

Course Outline

1. Installation of the software Scilab.
2. Basic syntax, Mathematical Operators, Predefined constants, Built infunctions.
3. Complex numbers, Polynomials, Vectors, Matrix. Handling these data structuresusing built infunctions
4. Programming
(a) Functions
(b) Loops
(c) Conditional statements
(d) Handling.scifiles
5. Installation of additional packages e.g., "optimization"
6. Graphics handling
(a) $2 \mathrm{D}, 3 \mathrm{D}$
(b) Generating .jpg files
(c) Function plotting
(d) Data plotting
7. Applications
(a) Numerical Linear Algebra (Solving linear equations, eigenvalues etc.)
(b) Numerical Analysis: iterative methods
(c) ODE: plotting solution curves

References

[1] Claude Gomez, Carey Bunks Jean-Philippe Chancelier Fran ois Delebecque Mauriee Goursat Ramine Nikoukhah Serge Steer: Engineering and Scientific Computing with Scilab, SpringerScience, LLC, 1998.
[2] Sandeep Nagar: Introduction to Scilab For Engineers and Scientists, Apress, 2017.

MTH2A04: SCIENTIFIC PROGRAMMING WITH PYTHON (PCC)

Number of Credits: 4

Course Outline

1. Literal Constants, Numbers, Strings, Variables, Identifier, Datatypes
2. Operators, Operator Precedence, Expressions
3. Control flow: If, while, for, break, continue statements
4. Functions: Defining a function, function parameters, local variables, defaultarguments, keywords, return statement, Doc-strings
5. Modules: using system modules, import statements, creating modules
6. Data Structures: Lists, tuples, sequences.
7. Writing a python script
8. Files: Input and output using file and pickle module
9. Exceptions: Errors, Try-except statement, raising exceptions, try-finally statement
10. Roots of Nonlinear Equations: Evaluation of Polynomials, Bisection method, Newton-Raphson Method, Complex roots by Bairstow method.
11. Direct Solution of Linear Equations: Solution by elimination, Gauss Eliminationmethod, Gauss Elimination with Pivoting, Triangular Factorization method
12. Iterative Solution ofLinearEquations: Jacobi Iterationmethod, Gauss-Seidelmethod.
13. Curve Fitting-Interpolation: Lagrange Interpolation Polynomial, Newton Interpolation Polynomial, Divided Difference Table, Interpolation with Equidistantpoints.
14. Numerical Differentiation: Differentiating Continuous functions, DifferentiatingTabulated functions.
15. Numerical Integration: Trapezoidal Rule, Simpsons $1 / 3$ rule.
16. Numerical Solution of Ordinary Differential Equations: Euler's Method, Rung-Kuttamethod (Order 4)
17. Eigenvalue problems: Polynomial Method, Power method.

References

[1] Swaroop C H: A Byte of Python.
[2] Amit Saha: Doing Math with Python, No Starch Press, 2015.
[3] SD Conte and Carl De Boor: Elementary Numerical Analysis (An algorithmicapproach) 3rd edition, McGraw-Hill, New Delhi
[4] K. Sankara Rao: Numerical Methods for Scientists and Engineers Prentice Hall ofIndia, New Delhi.
[5] Carl E Froberg: Introduction to Numerical Analysis, Addison Wesley Pub Co, 2ndEdition
[6] Knuth D.E.: The Art of Computer Programming: Fundamental Algorithms (VolumeI), Addison Wesley, Narosa Publication, New Delhi.
[7] Python Programming, wiki-books contributors Programming Python, Mark Lutz,
[8] Python 3 Object Oriented Programming, Dusty Philips, PACKT Open-source Publishing
[9] Python Programming Fundamentals, Kent D Lee, Springer
[10] Learning to Program Using Python, Cody Jackson, Kindle Edition
[11] Online reading http://pythonbooks.revolunet.com/

SEMESTER 3

MTH3C11 - MULTIVARIABLE CALCULUS AND GEOMETRY

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT 1: RUDIN W., PRINCIPLES OF MATHEMATICAL ANALYSIS, (3rd Edn.), Mc. Graw Hill, 1986.

TEXT 2: ANDREW PRESSLEY, ELEMENTARY DIFFERENTIAL GEOMETRY (2 ${ }^{\text {nd }}$ Edn.), Springer-Verlag, 2010.

Module 1

Functions of Several Variables Linear Transformations, Differentiation, The Contraction Principle, The Inverse Function Theorem, the Implicit Function Theorem. [Chapter 9 - Sections 1-29, 33-37 from Text 1]

Module 2

What is a curve? Arc-length, Reparametrization, Closed curves, Level curves versus parametrized curves. Curvature, Plane curves, Space curves What is a surface, Smooth surfaces, Smooth maps, Tangents and derivatives, Normals and orientability. [Chapter 1 Sections 1-5, Chapter 2 Sections 1 - 3, Chapter 4 Sections 1-5 from Text-2]

Module 3

Level surfaces, Ruled surfaces and surfaces of revolution, Applications of the inverse function theorem, Lengths of curves on surfaces, Equi-real maps and a theorem of Archimedes, The second fundamental form, The Gauss and Weingarten maps, Normal and geodesic curvatures. Gaussian and mean curvatures, Principal curvatures of a surface. [Chapter 5 Sections $1,3 \& 6$, Chapter 6 Sections 1 and 4(up to and including 6.4.3) Chapter 7 Sections $1-3$, Chapter 8 Sections $1-2$ from Text - 2]

References

[1] M. P. do Carmo: Differential Geometry of Curves and Surfaces;
[2] W. Klingenberg: A course in Differential Geometry;
[3] J. R. Munkres: Analysis on Manifolds; Westview Press; 1997
[4] C. C. Pugh: Real Mathematical Analysis, Springer; 2010
[5] M. Spivak: A Comprehensive Introduction to Differential Geometry-Vol. I; Publishor Perish, Boston; 1970
[6] M. Spivak: Calculus on Manifolds; Westview Press; 1971
[7] V.A. Zorich: Mathematical Analysis-I; Springer; 2008

MTH3C12 - COMPLEX ANALYSIS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE (2nd Edn.); Springer International Student Edition; 1992

Module 1

The extended plane and its spherical representation, Power series, Analytic functions, Analytic functions as mappings, Mobius transformations, Riemann-Stieltijes integrals[Chapt. I Section 6; Chapt. III Sections 1, 2 and 3; Chapter IV Section 1]

Module 2

Power series representation of analytic functions, Zeros of an analytic function, The index of a closed curve, Cauchy's Theorem and Integral Formula, The homotopic version of Cauchy's Theorem and simple connectivity, Counting zeros; the Open Mapping Theorem andGoursats Theorem.

Module 3

The classification of singularities, Residues, The Argument Principle and The Maximum Principle, Schwarz's Lemma, Convex functions and Hadamard's three circles theorem [Chapt. V: Sections 1, 2, 3; Chapter VI Sections 1, 2, 3]

References

[1] H. Cartan: Elementary Theory of analytic functions of one or several variables; Addison - Wesley Pub. Co.; 1973
[2] T.W. Gamelin: Complex Analysis; Springer-Verlag, NY Inc.; 2001
[3] T.O. Moore and E.H. Hadlock: Complex Analysis, Series in Pure Mathematics- Vol. 9; World Scientific; 1991
[4] L. Pennisi: Elements of Complex Variables (2nd Edn.); Holf, Rinehart \& Winston; 1976
[5] R. Remmert: Theory of Complex Functions; UTM, Springer-Verlag, NY; 1991
[6] W. Rudin: Real and Complex Analysis (3rd Edn.); Mc Graw - Hill InternationalEditions; 1987
[7] H. Sliverman: Complex Variables; Houghton Mifflin Co. Boston; 1975.

MTH3C13 - FUNCTIONAL ANALYSIS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: YULI EIDELMAN, VITALI MILMAN \& ANTONIS TSOLOMITIS; FUNCTIONAL ANALYSIS AN INTRODUCTION; AMS, Providence, Rhode Island, 2004

Module 1

Linear Spaces; normed spaces; first examples: Linear spaces, Normed spaces; first examples, Holder's inequality, Minkowski's inequality, Topological and geometric notions, Quotient normed space, Completeness; completion. [Chapter 1 Sections 1.1-1.5]

Module 2

Hilbert spaces: Basic notions; first examples, Cauchy- Schwartz inequality and Hilbertian norm, Bessels inequality, Complete systems, Gram-Schmidt orthogonalization procedure, orthogonal bases, Parseval' identity; Projection; orthogonal decompositions; Separable case, The distance from a point to a convex set, Orthogonal decomposition; linear functionals; Linear functionals in a general linear space, Bounded linear functionals, Bounded linear functionals in a Hilbert space, An example of a non-separable Hilbert space. [Chapter 2; Sections 2.1-2.3(omit Proposition 2.1. 15)]

Module 3

The dual space; The Hahn Banach Theorem and its first consequences, corollaries of the Hahn Banach theorem, Examples of dual spaces. Bounded linear Operators; Completeness of the space of bounded linear operators, Examples of linear operators, Compact operators, Compact sets, The space of compact operators, Dual operators ,Operators of finite rank, Compactness of the integral operators in L2, Convergence in the space of bounded operators, Invertible operators[Chapter3; Sections 3.1, 3.2; Chapter4; Sections 4.1-4.7]

References

[1] B. V. Limaye: Functional Analysis, New Age International Ltd, New Delhi, 1996.
[2] G. Bachman and L. Narici: Functional Analysis; Academic Press, NY; 1970
[3] J. B. Conway: Functional Analysis; Narosa Pub House, New Delhi; 1978
[4] J. Dieudonne: Foundations of Modern analysis; Academic Press; 1969
[5] W. Dunford and J. Schwartz: Linear Operators - Part 1: General Theory; JohnWiley \& Sons; 1958
[6] Kolmogorov and S.V. Fomin: Elements of the Theory of Functions and Functional Analysis (English translation); Graylock Press, Rochaster NY; 1972
[7] E. Kreyszig: Introductory Functional Analysis with applications; John Wiley \& Sons; 1978
[8] F. Riesz and B. Nagy: Functional analysis; Frederick Unger NY; 1955
[9] W. Rudin: Functional Analysis; TMH edition; 1978
[10] W. Rudin: Real and Complex Analysis (3rd Edn.); McGraw-Hill; 1987

MTH3C14 - PDE AND INTEGRAL EQUATIONS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT 1: AN INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS, YEHUDA PINCHOVER AND JACOB RUBINSTEIN, Cambridge University Press
TEXT 2: HILDEBRAND, F.B., METHODS OF APPLIED MATHEMATICS (2nd Edn.), Prentice-Hall of India, New Delhi, 1972.

Module 1

First-order equations: Introduction, Quasilinear equations, The method of characteristics, Examples of the characteristic's method, The existence and uniqueness theorem, The Lagrange method, Conservation laws and shock waves, The eikonal equation, General nonlinear equations
Second-order linear equations in two independent variables: Introduction, Classification, Canonical form of hyperbolic equations, Canonical form of parabolic equations, Canonical form of elliptic equations The one-dimensional wave equation: Introduction, Canonical form and general solution, The Cauchy problem and d'Alembert's formula, Domain of dependence and region of influence, The Cauchy problem for the nonhomogeneous wave equation [Chapter 2, 3 and 4 from Text 1]

Module 2

The method of separation of variables: Introduction, Heat equation: homogeneous boundary condition, Separation of variables for the wave equation, Separation of variables for nonhomogeneous equations, The energy method and uniqueness, Further applications ofthe heat equation

Elliptic equations: Introduction, Basic properties of elliptic problems, The maximum principle, Applications of the maximum principle, Greens identities, The maximum principle for the heat equation, Separation of variables for elliptic problems, Poisson's formula [Chapter 5 and 7 from Text 1]

Module 3

Integral Equations: Introduction, Relations between differential and integral equations, The Green's functions, Fredholm equations with separable kernels, Illustrative examples, Hilbert- Schmidt Theory, Iterative methods for solving Equations of the second kind. The Newman Series, Fredholm Theory [Sections 3.1 3.3, 3.6 3.11 from the Text 2]

References

[1] Amaranath T.: Partial Differential Equations, Narosa, New Delhi, 1997.
[2] A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd, New Delhi; 1990
[3] E.A. Coddington: An Introduction to Ordinary Differential Equations Printice Hall ofIndia, New Delhi; 1974
[4] R. Courant and D. Hilbert: Methods of Mathematical Physics-Vol I; Wiley EasternReprint; 1975
[5] P.Hartman: Ordinary Differential Equations; John Wiley \& Sons; 1964
[6] F.John: Partial Differential Equations; Narosa Pub House New Delhi; 1986
[7] Phoolan Prasad Renuka Ravindran: Partial Differential Equations; Wiley EasternLtd, New Delhi; 1985
[8] L.S. Pontriyagin: A course in ordinary Differential Equations; Hindustan Pub. Corporation, Delhi; 1967
[9] I. Sneddon: Elements of Partial Differential Equations; McGraw-Hill InternationalEdn.; 1957

MTH3E01 - CODDING THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: D.J. Hoffman, Coding Theory: The Essentials, Mareel Dekker Inc, 1991

Module 1

Detecting and correcting error patterns, Information rate, the effects of error detection and correction, finding the most likely code word transmitted, weight and distance, MLD, Error detecting and correcting codes. linear codes, bases for $C=\langle S>$ and $C \perp$, generating and parity cheek matrices, equivalent codes, distance of linear code, MLD for a linear code, reliability of IMLD for linear codes [Chapter $1 \&$ Chapter 2]

Module 2

Perfect codes, hamming code, Extended code, Golay code and extended Golay code, RedHulles codes [Chapter 3: Sections 1 to 8]

Module 3

Cyclic linear codes, polynomial encoding and decoding, dual cyclic codes, BCH linear codes, Cyclic

Hamming code, Decoding 2 error correcting BCH codes [Chapter 4 and Appendix A ofthe chapter, Chapter 5]

References

[1] E.R. Berlekamp: Algebraic coding theory, Mc Graw Hill, 1968
[2] P.J. Cameron and J.H. Van Lint: Fundamentals of Wavelets Theory Algorithms andApplications, John Wiley and Sons, Newyork., 1999.
[3] Yves Nievergelt: Graphs, codes and designs, CUP.
[4] H. Hill: A first Course in Coding Theory, OUP, 1986.

MTH3E02 - CRYPTOGRAPHY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: Douglas R. Stinson, Cryptography Theory and Practice, Chapman \& Hall, 2ndEdition.

Module 1

Classical Cryptography: Some Simple Cryptosystems, Shift Cipher, Substitution Cipher, Affine Cipher, Vigenere Cipher, Hill Cipher, Permutation Cipher, Stream Ciphers. Cryptanalysis of the Affine, Substitution, Vigenere, Hill and LFSR Stream Cipher.

Module 2

Shannon's Theory: - Elementary Probability Theory, Perfect Secrecy, Entropy, Huff- man Encodings, Properties of Entropy, Spurious Keys and Unicity Distance, Product Cryptosystem.

Module 3

Block Ciphers: Substitution Permutation Networks, Linear Cryptanalysis, Differential Cryptanalysis, Data Encryption Standard (DES), Advanced Encryption Standard (AES). Cryptographic Hash Functions: Hash Functions and Data integrity, Security of Hash Functions, iterated hash functions- MD5, SHA 1, Message Authentication Codes, Unconditionally Secure MAC s. [Chapter 1: Section 1.1(1.1.1 to 1.1.7), Section 1.2 (1.2.1 to 1.2.5); Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7; Chapter 3: Sections 3.1, 3.2, 3.3(3.3.1 to 3.3.3), Sect.3.4, Sect. 3.5(3.5.1,3.5.2), Sect.3.6(3.6.1, 3.6.2); Chapter 4: Sections 4.1, 4.2(4.2.1 to 4.2.3), Section 4.3 (4.3.1, 4.3.2), Section 4.4(4.4.1, 4.4.2), Section 4.5 (4.5.1, 4.5.2)]

References

[1] Jeffrey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to Mathematical Cryptography, Springer International Edition.
[2] H. Deffs \& H. Knebl: Introduction to Cryptography, Springer Verlag, 2002.
[3] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook ofApplied Cryptography, CRC Press, 1996.
[4] William Stallings: Cryptography and Network Security Principles and Practice, ThirdEdition, Prentice-hall India, 2003.

MTH3E03 - MEASURE AND INTRGRATION (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: WALTER RUDIN, REAL AND COMPLEX ANALYSIS (3rd Edn.), Mc. Graw- Hill International Edn., New Delhi, 1987.

Module 1

The concept of measurability, Simple functions, Elementary properties of measures, Arithmetic in [0, infinity], Integration of Positive Functions, Integration of Complex Functions, The Role Played by Sets of Measure zero, Topological Preliminaries, The Riesz Representation Theorem. (Chap. 1, Sections: 1.2 to 1.41 Chap. 2, Sections: 2.3 to 2.14)

Module 2

Regularity Properties of Borel Measures, Lebesgue Measure, Continuity Properties of Measurable Functions. Total Variation, Absolute Continuity, Consequences of Radon - Nikodym Theorem. (Chap. 2, Sections: 2.15 to 2.25 Chap. 6, Sections: 6.1 to 6.14)

Module 3

Bounded Linear Functionals on L^{P}, The Riesz Representation Theorem, Measurability on Cartesian Products, Product Measures, The Fubini Theorem, Completion of Product Measures. (Chap. 6, Sections: 6.15 to 6.19 , Chap. 8 , Sections: 8.1 to 8.11)

References

[1] P.R. Halmos: Measure Theory, Narosa Pub. House New Delhi (1981) SecondReprint
[2] H.L. Roydon: Real Analysis, Macmillan International Edition (1988) Third Edition
[3] E. Hewitt \& K. Stromberg: Real and Abstract Analysis, Narosa Pub. House NewDelhi (1978)
[4] A.E. Taylor: General Theory of Functions and Integration, Blaidsell Publishing Co NY(1965)
[5] G.De Barra : Measure Theory and Integration, Wiley Eastern Ltd. Bangalore (1981)

MTH3E04 - PROBABILITY THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: An Introduction to Probability Theory and Statistics (Second Edition), By Vijay K. Rohatgi and A.K. MD. Ehsanes Saleh, John Wiley Sons Inc. New York.

Module 1

Random Variables and Their Probability Distributions Random Variables. Probability Distribution of a random Variable. Discrete and Continuous Random Variables. Functions of a random Variable. Chapter 2 of Text. (Sections 2.1-2.5) Moments and Generating Functions. Moments of a distribution Function. Generating Functions. Some Moment Inequalities. Chapter 3 of Text. (Sections 3.1-3.4)

Module 2

Multiple Random Variables. Multiple random Variables. Independent Random Variables. Functions of several Random variables. Covariance, Correlation and Moments. Conditional Expectations Order statistics and their Distributions. Chapter 4 of Text. (Sections 4.1-4.7)

Module 3

Limit Theorems. Modes of Convergence. Weak law of Large Numbers. Strong Law of large Numbers. Limiting Moment Generating Functions. Central Limit Theorem. Chapter 6of Text. (Sections 6.1-6.6)

References

[1] B.R. Bhat: MODERN PROBABILITY THEORY (Second Edn.) Wiley Eastern Limited,Delhi (1988)
[2] K.L. Chung: Elementary Probability Theory with Stochastic Processes Narosa PubHouse, New Delhi (1980)
[3] W.E. Feller: An Introduction to Probability Theory and its Applications Vols I \& II-John Wiley \& Sons, (1968) and (1971)
[4] Rukmangadachari E.: Probability and Statistics, Pearson (2012)
[5] Robert V Hogg, Allen Craig \& Joseph W McKean: Introduction to MathematicalStatistics (Sixth Edn.), Pearson 2005.

MTH4C15 - ADVANCED FUNCTIONAL ANALYSIS

Number of Credits: 4

Contact Hours per week: 5

Course Outline

TEXT: YULI EIDELMAN, VITALI MILMAN \& ANTONIS TSOLOMITIS; FUNCTIONAL ANALYSIS AN INTRODUCTION; AMS, Providence, Rhode Island, 2004.

Module 1

Spectrum, Fredholm Theory of Compact operators; Classification of spectrum, Fred- holm Theory of Compact operators. Self-adjoint operators; General properties, Self-adjoint compact operators, spectral theory, Minimax principle, Applications to integral operators. [Chapter5; Sections 5.1, 5.2; Chapter6; Sections 6.1, 6.2]

Module 2

Order in the space of self-adjoint operators, properties of the ordering; Projection operators; properties of projection in linear spaces, Ortho projections. Functions of Operators spectral decomposition; Spectral decomposition, The main inequality, Construction of the spectral integral, Hilbert Theorem [Chapter6; Sections6.3-6.4, Chapter7, sections 7.1, 7.2 up-to and including statement of Theorem 7.2.1]

Module 3

The fundamental theorems and the basic methods; Auxiliary results, The Banach open mapping Theorem, The closed graph Theorem, The Banach- Steinhaus theorem, Bases in Banach spaces, Linear functionals; the Hahn Banach theorem, Separation of Convex sets. Banach Algebras; Preliminaries, Gelfand's theorem on maximal ideals [Chapter9 Sections9.1- 9.7; Chapter10, Sections10.1, 10.2]

References

[1] B. V. Limaye: Functional Analysis, New Age International Ltd, New Delhi, 1996.
[2] R. Bhatia: Notes on Functional Analysis TRIM series, Hindustan Book Agency
[3] Kesavan S: Functional Analysis TRIM series, Hindustan Book Agency
[4] S David Promislow: A First Course in Functional Analysis, John wiley \& Sons, INC.,(2008)
[5] Sunder V.S: Functional Analysis TRIM Series, Hindustan Book Agency
[6] George Bachman \& Lawrence Narici: Functional Analysis Academic Press, NY(1970)
[7] Kolmogorov and Fomin S.V: Elements of the Theory of Functions and Functional Analysis. English Translation, Graylock, Press Rochaster NY (1972)
[1] W. Dunfordand J. Schwartz: Linear Operators Part1, General Theory John Wiley \& Sons (1958)
[2] E. Kreyszig: Introductory Functional Analysis with Applications John Wiley \& Sons(1978)
[3] F. Riesz and B. Nagy: Functional Analysis Frederick Unger NY (1955)
[4] J.B.Conway: Functional Analysis Narosa Pub House New Delhi (1978)
[5] Walter Rudin: Functional Analysis TMH edition (1978)
[6] Walter Rudin: Introduction to Real and Complex Analysis TMH edition (1975)
[7] J.Dieudonne: Foundations of Modern Analysis Academic Press (1969)
[8] YuliEidelman,Vitali Milman and Antonis Tsolomitis: Functional analysis An Introduction, Graduate Studies in Mathematics Vol. 66 American Mathematical Society 2004.

MTH4E05 - ADVANCED COMPLEX ANALYSIS (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT 1: JOHN B. CONWAY, FUNCTIONS OF ONE COMPLEX VARIABLE (2 ${ }^{\text {nd }}$ Edn.), springer International Student Edition, 1973

Module 1

The Space of continuous functions $C(G, \Omega)$, Spaces of Analytic functions, Spaces of meromorphic functions, The Riemann Mapping theorem, Weierstrass Factorization Theorem [Chapter. VII: Sections 1, 2, 3,4 and 5]

Module 2

Factorization of the sine function, Gamma function, The Riemann Zeta function, Runge's theorem, Simple connectedness [Chapt. VII: Sections 6, 7 and 8, Chapter VIII Sections 1 and 2]

Module 3

Mittage-Leffler's Theorem, Schwarz reflexion principle, Analytic continuation along a path, Monotromy theorem, Jensen's formula, The Genus and order of an entire function, Statement of Hadamard's factorization theorem [Chapt. VIII: Section 3, Chapter 9 sections 1,2 and 3, Chapter 11 sections 1, 2, Section 3 Statement of Hadamard's factorization theoremonly]

References

[1] Cartan H: Elementary Theory of Analytic Functions of one or Several Variables, Addison-Wesley Pub. Co. (1973)
[2] Conway J.B: Functions of One Complex Variable, Narosa Pub. Co, New Delhi (1973)
[3] Moore T.O. \& Hadlock E.H: Complex Analysis, Series in Pure Mathematics - Vol. 9. World Scientific, (1991)
[4] Pennisi L: Elements of Complex Variables, Holf, Rinehart \& Winston, 2nd Edn. (1976)
[5] Rudin W: Real and Complex Analysis, 3rd Edn. Mc Graw - Hill International Edn.(1987)
[6] Silverman H: Complex Variables, Houghton Mifflin Co. Boston (1975)
[7] Remmert R: Theory of Complex Functions, UTM, Springer- verlag, NY, (1991).

MTH4E06 - ALGEBRAIC NUMBER THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: I. N. STEWART \& D.O. TALL, ALGEBRAIC NUMBER THEORY, (2 ${ }^{\text {nd }}$ Edn. $)$, Chapman \& Hall, (1987)

Module 1

Symmetric polynomials, Modules, Free abelian groups, Algebraic Numbers, Conjugates and Discriminants, Algebraic Integers, Integral Bases, Norms and Traces, Rings of Integers, Quadratic Fields, Cyclotomic Fields. [Chapter1, Sections 1.4 to 1.6; Chapter 2, Sections 2.1 to 2.6; Chapter 3, Sections 3.1 and 3.2 from the text]

Module 2

Historical background, Trivial Factorizations, Factorization into Irreducibles, Examples of Nonunique Factorization into Irreducibles, Prime Factorization, Euclidean Domains, Euclidean Quadratic fields Ideals Historical background, Prime Factorization of Ideals, The norm of an ideal [Chapter 4, Sections 4.1 to 4.7, Chapter 5, Sections 5.1 to 5.3.]

Module 3

Lattices, The Quotient Torus, Minkoski theorem, The Space Lst, The Class-Group an Existence Theorem, Finiteness of the Class-Group, Factorization of a Rational Prime, Fermat's Last Theorem Some history, Elementary Considerations, Kummers Lemma, Kummers Theorem. [Chapter 6, Chapter 7, Section 7.1 Chapter 8, Chapter 9, Sections
9.1 to 9.3, Chapter 10. Section 10.1, Chapter 11: 11.1 to 11.4.]

References

[1] P. Samuel: Theory of Algebraic Numbers, Herman Paris Houghton Mifflin, NY, (1975)
[2] S. Lang: Algebraic Number Theory, Addison Wesley Pub Co., Reading, Mass, (1970)
[3] bf D. Marcus: Number Fields, University text, Springer Verlag, NY, (1976)
[4] 4T.I.FR. Pamphlet No: 4: Algebraic Number Theory (Bombay, 1966)
[5] Harvey Cohn: Advanced Number Theory, Dover Publications Inc., NY, (1980)
[6] Andre Weil: Basic Number Theory, (3rd Edn.), Springer Verlag, NY, (1974)
[7] G.H. Hardy and E.M. Wright: An Introduction to the Theory of Numbers, Oxford University Press.
[8] Z.I. Borevich \& I.R. Shafarevich: Number Theory, Academic Press, NY 1966.
[9] Esmonde \& Ram Murthy: Problems in Algebraic Number Theory, Springer Verlag2000.

MTH4E07 - ALGEBRAIC TOPOLOGY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: FRED H. CROOM., BASIC CONCEPTS OF ALGEBRAIC TOPOLOGY, UTM, Springer Verlag, NY, 1978.
(Pre requisites: Fundamentals of group theory and Topology)

Module 1

Geometric Complexes and Polyhedra: Introduction. Examples, Geometric Complexes and Polyhedra, Orientation of geometric complexes. Simplicial Homology Groups: Chains, cycles, Boundaries and homology groups, Examples of homology groups; The structure of homology groups; [Chapter 1: Sections 1.1 to 1.4; Chapter 2: Sections 2.1 to 2.3 from the text]

Module 2

Simplicial Homology Groups (Contd.): The Euler Poincare's Theorem; Pseudo manifoldsand the homology groups of $S n$. Simplicial Approximation: Introduction, Simplicial approximation, Induced homomorphisms on the Homology groups, The Brouwer fixed pointtheorem and related results [Chapter 2: Sections 2.4, 2.5; Chapter 3: Sections 3.1 to 3.4 from the text]

Module 3

The Fundamental Group: Introduction, Homotopic Paths and the Fundamental Group, The Covering Homotopy Property for S1, Examples of Fundamental Groups. [Chapter 4: Sections 4.1 to 4.4 from the text]

References

[1] Eilenberg S, Steenrod N.: Foundations of Algebraic Topology; Princeton Univ. Press; 1952
[2] S.T. Hu: Homology Theory; Holden-Day; 1965
[3] Massey W.S.: Algebraic Topology: An Introduction; Springer Verlag NY; 1977
[4] C.T.C. Wall: A Geometric Introduction to Topology; Addison-Wesley Pub. Co.Reading Mass; 1972

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: ATIYAH M.F., MACKONALD I. G., INTRODUCTION TO COMMUTATIVE ALGEBRA, Addison Wesley, NY, 1969.

Module 1

Rings and Ideals, Modules [Chapters I and II from the text]

Module 2

Rings and Modules of Fractions, Primary Decomposition [Chapters III \& IV from thetext]

Module 3

Integral Dependence and Valuation, Chain conditions, Noetherian rings, Artinian rings Chapters V, VI, VII \& VIII from the text]

References

[1] N. Bourbaki: Commutative Algebra; Paris - Hermann; 1961
[2] D. Burton: A First Course in Rings and Ideals; Addison - Wesley; 1970
[3] N. S. Gopalakrishnan: Commutative Algebra; Oxonian Press; 1984
[4] T.W. Hungerford: Algebra; Springer Verlag GTM 73(4th Printing); 1987
[5] D. G. Northcott: Ideal Theory; Cambridge University Press; 1953
[6] O. Zariski, P. Samuel: Commutative Algebra- Vols. I \& II; Van Nostrand, Princeton; 1960

MTH4E09 - DIFFERENTIAL GEOMETRY (ELECTIVE)

Number of Credits: 3
Contact Hours per week: 5

Course Outline

TEXT: J.A. THORPE: ELEMENTARY TOPICS IN DIFFERENTIAL GEOMETRY

Module 1

Graphs and Level Set, Vector fields, The Tangent Space, Surfaces, Vector Fields onSurfaces, Orientation. The Gauss Map. [Chapters: 1,2,3,4,5,6 from the text.]

Module 2

Geodesics, Parallel Transport, The Weingarten Map, Curvature of Plane Curves, Arc Length and Line

Integrals. [Chapters: $7,8,9,10,11$ from the text].

Module 3

Curvature of Surfaces, Parametrized Surfaces, Local Equivalence of Surfaces and Parametrized Surfaces. [Chapters 12,14,15 from the text]

References

[1] W.L. Burke: Applied Differential Geometry, Cambridge University Press (1985)
[2] M. de Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall IncEnglewood Cliffs NJ (1976)
[3] V. Grilleman and A. Pollack: Differential Topology, Prentice Hall Inc Englewood Cliffs NJ (1974)
[4] B. O'Neil: Elementary Differential Geometry, Academic Press NY (1966)
[5] M. Spivak: A Comprehensive Introduction to Differential, Geometry, (Volumes 1 to 5),Publish or Perish, Boston (1970, 75)
[6] R. Millmen and G. Parker: Elements of Differential Geometry, Prentice Hall Inc Englewood Cliffs NJ (1977)
[7] I. Singer and J.A. Thorpe: Lecture Notes on Elementary Topology and Geometry, UTM, Springer Verlag, NY (1967)

MTH4E10 - FLUID DYNAMICS (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: L.M. MILNE-THOMSON, THEORETICAL HYDRODYNAMICS, (Fifth Edition) Mac Millan Press, London, 1979.

Module 1

EQUATIONS OF MOTION: Differentiation w.r.to. the time, The equation of continuity Boundary condition (Kinematical and Physical), Rate of change of linear momentum, The equation of motion of an inviscid fluid, Conservative forces, Steady motion, The energy equation, Rate of change of circulation, Vortex motion, Permanence of vorticity, Pressure equation, Connectivity, Acyclic and cyclic irrotational motion, Kinetic energy of liquid, Kelvins minimum energy theorem. TWO-DIMENSIONAL MOTION: Motion in two- dimensions, Intrinsic expression for the vorticity; The rate of change of vorticity; Intrinsic equations of steady motion; Stream function; Velocity derived from the stream-function; Rankine's method; The stream function of a uniform stream; Vector expression for velocity and vorticity; Equation
satisfied by stream function; The pressure equation; Stagnation points; The velocity potential of a liquid; The equation satisfied by the velocity potential. [Chapter III: Sections 3.10, 3.20, 3.30, 3.31, 3.40, 3.41, $3.43,3.45,3.50,3.51,3.52,3.53,3.60,3.70,3.71,3.72,3.73$. Chapter IV: All Sections.]

Module 2

STREAMING MOTIONS: Complex potential; The complex velocity stagnation points, The speed, The equations of the streamlines, The circle theorem, Streaming motion past a circular cylinder; The dividing streamline, The pressure distribution on the cylinder, Cavitation, Rigid boundaries and the circle theorem, The Joukowski transformation, Theorem of Blasius. AEROFOILS: Circulation about a circular cylinder, The circulation between concentric cylinders, Streaming and circulation for a circular cylinder, The aerofoil, Further investigations of the Joukowski transformation Geometrical construction for the transformation, The theorem of Kutta and Joukowski. [Chaper VI: Sections 6.0, 6.01, 6.02, 6.03, 6.05, 6.21, 6.22, 6.23, 6.24, 6.25, 6.30, 6.41. Chapter VII: Sections 7.10, 7.11, 7.12, 7.20, 7.30, 7.31, 7.45.]

Module 3

SOURCES AND SINKS: Two dimensional sources, The complex potential for a simple source, Combination of sources and streams, Source and sink of equal strengths Doublet, Source and equal sink in a stream, The method of images, Effect on a wall of a source parallel to the wall, General method for images in a plane, Image of a doublet in a plane, Sources in conformal transformation Source in an angle between two walls, Source outside a circular cylinder, The force exerted on a circular cylinder by a source.

STKOKES STREAM FUNCTION: Axisymmetrical motions Stokes stream function,Simple source,Uniform stream, Source in a uniform stream, Finite line source, Airship forms, Source and equal sink Doublet; Rankin's solids. [Chapter VIII. Sections 8.10, 8.12, 8.20, 8.22, 8.23, 8.30, 8.40, 8.41, 8.42, 8.43, 8.50, 8.51, 8.60, 8.61, 8.62. Chapter XVI. Sections 16.0, 16.1, 16.20, 16.22, 16.23, 16.24, 16.25, 16.26, 16.27]

References

[1] Von Mises and K.O. Friedrichs: Fluid Dynamics, Springer International Edition.Reprint, (1988)
[2] James EA John: Introduction to Fluid Mechanics (2nd Edn.), Prentice Hall of India, Delhi, (1983).
[3] Chorlten: Text Book of Fluid Dynamics, CBS Publishers, Delhi 1985
[4] A. R. Patterson: A First Course in Fluid Dynamics, Cambridge University Press 1987

MTH4E11 - GRAPH THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

TEXT: J.A. Bondy and U.S.R. Murty : Graph Theory with applications. Macmillan

Module 1

Basic concepts of Graph. Trees, cut edges and Bonds, Cut vertices, Cayleys Formula, The Connector Problem, Connectivity, Blocks, Construction of Reliable Communication Networks, Euler Tours, Hamilton Cycles, The Chinese Postman Problem, The Travelling Salesman Problem.

Module 2

Matchings, Matchings and Coverings in Bipartite Graphs, Perfect Matchings, The Personnel Assignment Problem, Edge Chromatic Number, Vizings Theorem, The Timetabling Problem, Independent Sets, Ramseys Theorem

Module 3

Vertex Colouring-Chromatic Number, Brooks Theorem, Chromatic Polynomial, Girth and Chromatic Number, A Storage Problem, Plane and Planar Graphs, Dual Graphs, Euler's Formula, Bridges, Kuratowskis Theorem, The Five- Colour Theorem, Directed Graphs, Directed Paths, Directed Cycles.
[Chapter 2 Sections 2.1(Definitions \& Statements only), 2.2, 2.3, 2.4, 2.5; Chapter 3 Sections 3.1, 3.2, 3.3; Chapter 4 Sections 4.1 (Definitions \& Statements only), 4.2, 4.3, 4.4; Chapter 5 Sections 5.1, 5.2, 5.3, 5.4; Chapter 6 Sections 6.1,6.2,6.3; Chapter 7 Sections 7.1,7.2; Chapter 8 Sections 8.1, 8.2, 8.4, 8.5, 8.6; Chapter 9 Sections (9.1,9.2,9.3 Definitions \& Statements only), 9.4, 9.5, 9.6; Chapter 10 Sections 10.1, 10.2, 10.3.

References

[1] F. Harary: Graph Theory, Narosa publishers, Reprint 2013.
[2] Geir Agnarsson, Raymond Greenlaw: Graph Theory Modelling, Applications and Algorithms, Pearson Printice Hall, 2007.
[3] John Clark and Derek Allan Holton: A First look at Graph Theory, World Scientific (Singapore) in 1991 and Allied Publishers (India) in 1995
[4] R. Balakrishnan \& K. Ranganathan: A Text Book of Graph Theory, Springer Verlag,2nd edition 2012.

MTH4E12 - REPRESENTATION THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: Walter Ledermann, Introduction to Group Characters (Second Edition).

Module 1

Introduction, G- modules, Characters, Reducibility, Permutation Representations, Complete reducibility, Schur's lemma, The commutant(endomorphism) algebra. (Sections: 1.1 to 1.8)

Module 2

Orthogonality relations, the group algebra, the character table, finite abelian groups, the lifting process, linear characters. (section: 2.1 to 2.6)

Module 3

Induced representations, reciprocity law, the alternating group A5, Normal sub- groups, Transitive groups, the symmetric group, induced characters of S_{n}. (Sections: 3.1 to $3.4 \& 4.1$ to 4.3)

References

[1] C. W. Kurtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, John Wiley \& Sons, New York (1962)
[2] Faulton: The Representation Theory of Finite Groups, Lecture Notes in Mathematics, No. 682, Springer 1978.
[3] C. Musli: Representations of Finite Groups, Hindustan Book Agency, New Delhi(1993).
[4] I. Schur: Theory of Group Characters, Academic Press, London (1977).
[5] J.P. Serre: Linear Representation of Finite Groups, Graduate Text in Mathematics, Vol42, Springer (1977).

MTH4E13 - WAVELET THEORY (ELECTIVE)

Number of Credits: 3

Contact Hours per week: 5

Course Outline

TEXT: Michael. W. Frazier, An Introduction to Wavelets through Linear Algebra, Springer, New York, 1999.

Module 1

The discrete Fourier transforms: Basic Properties of Discrete Fourier Transforms, Translation invariant Linear Transforms, The Fast Fourier Transforms. Wavelets on Z N. Construction of wavelets on $\mathrm{Z} N$ - The First Stage, Construction of Wavelets on $\mathrm{Z} N$: The Iteration Step. [Chapter 2: sections 2.1 to 2.3; Chapter 3:
sections 3.1 and 3.2]

Module 2

Wavelets on Z : $f^{2}(Z)$, Complete orthonormal sets in Hilbert spaces, $L^{2}([\pi, \pi))$ and Fourier series, The Fourier Transform and convolution on $f^{2}(Z)$, First stage Wavelets on Z, Implementation and Examples. [Chapter 4: sections 4.1 to 4.6 and 4.7]

Module 3

Wavelets on R : $L^{2}(R)$ and approximate identities, The Fourier transform on R, Multiresolution analysis and wavelets, Construction of MRA. [Chapter 5: sections 5.1 to 5.4$]$

References

[1] C.K. Chui: An introduction to wavelets, Academic Press, 1992
[2] Jaideva. C. Goswami, Andrew K Chan: Fundamentals of Wavelets Theory Algorithms and Applications, John Wiley and Sons, New York., 1999.
[3] Yves Nievergelt: Wavelets made easy, Birkhauser, Boston,1999.
[4] G. Bachman, L.Narici and E. Beckenstein : Fourier and wavelet analysis,Springer, 2006.

