A CASE STUDY OF THE FLOOD IN ERNAKULAM DISTRICT - 2018

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

DEVIKA.K

Reg. No: CCAVMES008

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr. REKHA V.B

Assistant Professor

Department of Geology and Environmental science

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Thrissur, Kerala

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "A CASE STUDY OF THE FLOOD IN ERNAKULAM DISTRICT - 2018" is an authentic record of the work carried out by DEVIKA K under guidance of Dr. REKHA V B, Assistant Professor Department of Geology and Environmental science, CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Asst.Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1.

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "A CASE STUDY OF THE FLOOD IN ERNAKULAM DISTRICT - 2018" is an authentic record of the work carried out by DEVIKA K under guidance of Dr. Rekha V B, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I hereby declare that the project work entitled "A CASE STUDY OF THE FLOOD IN ERNAKULAM DISTRICT - 2018" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to June 2023 under the guidance and supervision of **Dr REKHA V B** Assistant Professor Department of Geology and Environmental science CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

DEVIKA K

ACKNOWLEDGEMENT

First and foremost, I thank Almighty GOD, for all blessings that he has showed on me for completing this dissertation.

I wish to express my utmost and profound gratitude to my supervising guide **Dr. Rekha V B** (Assistant Professor, Department of Geology and Environmental science, Christ college (autonomous), Irinjalakuda) for her valuable guidance, support, understanding, kindness to me throughout my work, I am grateful to her for the constructive comments and careful evaluation of my thesis.

I would like to pay my deep sense of gratitude **Archana M** (Research Scholar, Department of Geology and Environmental Science, Christ College (autonomous), Irinjalakuda) for her invaluable advice, encouragement, and compassion to me during my work. I also thank her for her thoughtful analysis of my thesis and the helpful input she provided. It has been an honor to work under her direction.

I would like to express my sincere gratitude to **Vinu Raj** sir, the official in charge of the flood department at the Disaster Management office Ernakulam, for giving me information about the flood in Ernakulam district.

I would like to extend my sincere gratitude to **Dr. Subin K Jose**, assistant professor and head of department in the department of geology and environmental science, Christ College (Autonomous), Irinjalakuda.

It is an honor for me to express my gratitude and appreciation to my classmates and friends for their support and love throughout the process of my study. I would like to express my sincere thanks to all the faculty and staff at Christ College, Irinjalakuda, for their assistance and necessary measures.

Finally, my family, an important inspiration for me. So, with due respect, I express my gratitude to them for always supporting and encouraging me to excel forward and achieve my goal.

ABSTRACT

This study focused on understanding the causes, patterns, and impacts of flooding in the Ernakulam area. The primary objective is to investigate and analyze the frequency of floods in the region. To achieve this, a combination of quantitative and qualitative research techniques was employed. The study made use of various data sources, including geographic information system (GIS) mapping, historical flood records, rainfall etc. These sources provided valuable information to examine the flood events comprehensively. Additionally, in order to gather information from diverse perspectives, the researchers conducted extensive literature reviews, expert interviews, document analyses, and community surveys. By incorporating these research techniques, the study aimed to offer a holistic understanding of the flood situation in the Ernakulam area. It highlighted the existing problems and strengths related to flooding and identified viable flood management measures. The comprehensive picture painted by the study can serve as a valuable resource to guide effective flood mitigation strategies, enhance disaster management plans, and minimize the adverse effects of flooding in the region. The insights gained from this project are particularly relevant to policymakers, researchers, and other stakeholders interested in addressing the challenges posed by floods in the Ernakulam district. The study's findings can inform decision-making processes and assist in the development of informed policies and practices. Moreover, this research contributes to the establishment of a knowledge base for flood management, consolidating existing information and insights into a coherent framework.

In summary, the study aimed to understand the root causes, patterns, and effects of flooding in the Ernakulam area. It employed a combination of quantitative and qualitative research methods, incorporating diverse data sources and research techniques.

TABLE OF CONTENTS

1. INTRODUCTION1
1.1. TYPES OF FLOODS2
1.1.1. CAUSES OF FLOODS
1.1.2. EFFECTS OF FLOODS4
1.1.3. PREVENTION
1.1.4. GEOSPATIAL TECHNIQUES7
1.2. KERALA FLOOD
1.3. OBJECTIVE
2. REVIEW OF LITERATURE10
3. MATERIALS AND METHODS17
3.1. STUDY AREA
3.2. METHODOLOGY19
4. RESULT AND DISCUSSION
4.1. NATURAL FACTORS
4.2. ANTHROPOGENIC FACTORS
4.3. AFTER EFFECTS OF FLOODING
4.4. MAPS31
4.5. IMAGES OF FLOODED AREA IN ERNAKULAM
5. CONCLUSION
6. REFERENCES

LIST OF FIGURES

FIG 1: GRAPH REPRESENTATION OF RAINFALL INTENSITY	
IN 2018 AND 2019	6

LIST OF TABLES

TABLE 1: CLASSES OF SLOPES	24
TABLE 2: CLASSES OF ELEVATION LEVELS	24
TABLE 3: RAINFALL DISTRIBUTION IN ERNAKULAM DISTRICT	25
TABLE 4: CLASSES OF RAINFALL INTENSITY	26
TABLE 5: THREE YEAR LULC IN ERNAKULAM DISTRICT	28

LIST OF MAPS

MAP 1: MAP OF ERNAKULAM DISTRICT	18
MAP 2: SLOPE OF ERNAKULAM DISTRICT	
MAP 3: ELEVATION OF ERNAKULAM DISTRICTS	32
MAP 4: RAINFALL MAP OF ENAKULAM DISTRICT	33
MAP 5: GEOMORPHOLOGY OF ERNAKULAM DISTRICT	34
MAP 6: LULC OF ERNAKULAM DISTRICT	35

THERMAL STABILITY OF SOIL CARBON STORED IN DIFFERENT FOREST ECOSYSTEM OF KERALA WESTERN GHATS

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

DENEETTA FRANCIS

Reg. No: CCAVMES007

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr. S SANDEEP

Principal Scientist

Department of Soil Science

Kerala Forest Research Institute Peechi, Thrissur, Kerala

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"THERMAL STABILITY OF SOIL CARBON STORED IN DIFFERENT FOREST ECOSYSTEM OF KERALA WESTERN GHATS"** is an authentic record of the work carried out by **Ms. Deneetta Francis** under guidance of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Asst. Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1.

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"THERMAL STABILITY OF SOIL CARBON STORED IN DIFFERENT FOREST ECOSYSTEM OF KERALA WESTERN GHATS"** is an authentic record of the work carried out by **Ms. Deneetta Francis** under co-guidance of **Dr. Rekha V B**, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I hereby declare that the project work entitled "**Thermal stability of soil carbon stored in Different Forest Ecosystem of Kerala Western ghats**" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to June 2023 under the guidance and supervision of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Deneetta Francis

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr. S Sandeep, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute** for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I am extremely thankful to **Binsiya Muhammed**, Research Scholar, Kerala Forest Research Institute for her guidance and suggestions throughout my work.

I express my gratitude to my project guide **Dr. Rekha V.B**, Asst. Professor, Dept. of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable guidance and encouragement throughout the course of this work. I place on record my profound gratitude to **Dr. Subin K Jose**, Head of the Department of Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable advice and support throughout this project work.

I express my sincere thanks to all staffs of soil science department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

My acknowledgment would not be complete without acknowledging my parents. Any attempt at any level can't be satisfactorily completed without the support, guidance, and constant inspiration of my parents.

Deneetta Francis

Abstract

Research on the characteristics and attributes of soil in different forest types holds significance for effective environmental management and resource utilization. This study focused on the physico-chemical properties of soils and thermal stability of soil organic carbon in various forest types found in Kerala. A comprehensive understanding of the stability and carbon retention ability of soil aggregates of different forest types are vital for determining terrestrial carbon storage. Surface soil samples were gathered and dry sieved to segregate the macro aggregates (>250 μ m) and microaggregates (<250 μ m). The segregated aggregates were exposed to a 75-day incubation at four distinct temperatures: 25^oC, 30^oC, 35^oC and 45^oC. The texture of the forest soils varied from sandy to loamy. Soil pH was found to be acidic varying from 5.1 to 6.1 and organic carbon percentage varied from 1.2% to 18%. Activation energies for soil organic decomposition are higher in microaggregates. The microaggregates of the evergreen forest of Wayanad Plateau has the highest Q₁₀ value showing that the thermal dependency of the reaction increases by double.

TABLE OF CONTENTS

List of tables

List of figures

1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
3.	MATERIALS & METHODS	9
3.1	Study Area	9
3.2	Soil Sampling	12
3.3	Analysis of Basic Soil Parameters	12
	3.3.1 pH	12
	3.3.2 Electrical Conductivity	12
	3.3.3 Soil Texture & Bulk Density	12
	3.3.4 Walkley and Black Organic Carbon	12
3.4	Thermal Stability Studies	13
4.	RESULTS	15
5.	DISCUSSION	21
6.	CONCLUSION	23
7	REFERENCE	24
7	REFERENCE	24

LIST OF TABLES

Table	Title	Page
No.		No.
3.1	Sampling details	10
4.1	Physico-chemical properties – Texture class – Evergreen Forest	15
4.2	Physico-chemical properties – Texture class – Moist Deciduous Forest	16
4.3	Physico-chemical properties – Texture class – Shola Forest	16
4.4	Physico-chemical properties – Texture class – Dry Deciduous Forest	17
4.5	First order rate constants (K) of carbon decomposition at different temperatures in soil macro and micro aggregates of Southern High Hills with different Forest Types.	17
4.6	First order rate constants (K) of carbon decomposition at different temperatures in soil macro and micro aggregates of Northern High Hills with different Forest Types.	18
4.7	First order rate constants (K) of carbon decomposition at different temperatures in soil macro and micro aggregates of Wayanad Plateau with different Forest Types.	18
4.8	Activation energy (kJmol ⁻¹) of carbon decomposition in soil macro and micro aggregates of different Agro-ecological with their respective Forest Types.	19
4.9	Q ₁₀ values of carbon decomposition in soil macro and micro aggregates of different Agro-ecological units with their respective Forest Types.	20

LIST OF FIGURES

Fig No.	Title	Page No.
3.1	Sampling locations	11
5.1	Q10 values of Micro and Macroaggregates	22

Exploring the similarities in rainfall distribution patterns between the Southern and Northern Peaks of rainfall regions of Western Ghats in Kerala, India

Dissertation submitted to the

UNIVERSITY OF CALICUT

In partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Submitted by

EMIL SABU

Reg No: CCAVMES009

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Dr. NAVEENA K

Scientist B

Land and Water Management Research Group

Centre for Water Resources Development and Management (KSCSTE-CWRDM)

Kunnamangalam, Kozhikode-673 571

Kerala, India

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the dissertation entitled "Exploring the similarities in rainfall distribution patterns between the Southern and Northern Peaks of rainfall regions of Western Ghats in Kerala, India" is the bonafide work carried out by Ms. EMIL SABU (Reg No: CCAVMES009) under the guidance of Dr. Naveena K, Scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM) and internal supervision by Dr. Manju N J Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda as a part of the partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut for the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Subin K Jose Head of the Department Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

- 1.
- 2.

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the dissertation entitled "Exploring the similarities in rainfall distribution patterns between the Southern and Northern Peaks of rainfall regions of Western Ghats in Kerala, India" is the bonafide work carried out by Ms. EMIL SABU (Reg No: CCAVMES009) under the guidance of Dr. Naveena K, Scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM) and internal supervision by Dr. Manju N J Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda as a part of the partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut for the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Manju N.J Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I Emil Sabu hereby declare that this project work entitled "Exploring the similarities in rainfall distribution patterns between the Southern and Northern Peaks of rainfall regions of Western Ghats in Kerala, India" submitted to University of Calicut in partial fulfilment of the requirements for the degree of the Master of Science in Environmental Science, in my own work and to the best of my knowledge and belief. It is a record of original research carried out by me under the guidance and supervision of Dr. Naveena K, scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM), Kozhikode.

Place: Irinjalakuda

Date:

Emil Sabu

Reg No: CCAVMES009

ACKNOWLEDGEMENT

First and foremost, I thank Almighty GOD, for all blessings that he has showed on me for completing this dissertation.

I wish to express my utmost and profound gratitude to my supervising guide **Dr. Naveena K** (Scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM), Kozhikode) for his valuable guidance, support, understanding, kindness to me throughout my work, I am grateful to him for the constructive comments and careful evaluation of my thesis. It's been a privilege to work under his guidance.

I would like to pay my deep sense of gratitude to **Dr. Manoj P. Samuel**, Executive Director, CWRDM, and **Dr. Surendran U**, Principal Scientist and Head of Land and Water Management Research Group, CWRDM, for providing me the opportunity to work in Land and Water Management Research Group and for encouraging me to the highest peak.

I express my immense thanks to **Dr. Subin K Jose**, Assistant professor and HOD, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda, to pursue my Dissertation work in one of the finest institutes in the country.

I specially thank my supervising teacher **Dr. Manju N J** (Assistant professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda), for the active guidance in this project work.

I will be missing something if I do not extend my admiration and appreciation to all the scientists, project staff, technical staff and apprentices of Land and Water Management Research Group, CWRDM.

It is my privilege to thank my classmates and friends for their love, care, mental and physical help and encouragement during my research. I am happy to extend my gratitude to all teaching and non-teaching staff in Christ College, Irinjalakuda for their support and necessary actions.

Last but not least, my family, an important inspiration for me. So, with due respect, I express my gratitude to them for always supporting and encouraging me to excel forward and achieve my goal.

ABSTRACT

There is a growing concern over the climate change which results in unprecedented shifts and extreme rainfall over the last few decades across our country. The Western Ghats region of India is indeed considered ecologically sensitive and important for understanding the impacts of climate change. This study examines distribution of rainfall and several precipitation indices across the Southern and Northern Peak regions of the Western Ghat region in Kerala, India. The research spans a 33-year period from 1990 to 2022 and utilizes statistical tests such as the Mann-Kendall Test, Sen's Slope estimator, Wallis and Moore Phase-Frequency Test, and Modified Mann-Kendall Test used to study the long-term changes. The Climpact software is employed for analyzing extreme precipitation indices. Significance is assessed through ANOVA and t-tests. The results reveal distinct patterns in rainfall distribution and trends between the Southern and Northern peaks. The Southern Peak experiences higher rainfall amounts, significant deviations from average values, and a decreasing trend, while the Northern Peak shows an increasing trend in annual rainfall. Both peaks exhibit a negative trend during the Southwest monsoon season, and there is a temporal shift in heavy precipitation from June and July to August and September. Differences are also observed in rainfall patterns, durations of dry and wet spells, and precipitation thresholds between the two regions. The significant differences in precipitation indices within and between the peaks highlight the influence of local topography, microclimatic conditions, and geographical features on rainfall characteristics. These findings contribute to our understanding of the complex dynamics within the Western Ghats and emphasize the need for localized analysis and management of rainfall patterns in the region. Considering the geographical location and the impact of the Western Ghats on rainfall patterns is crucial for comprehending and predicting extreme precipitation events in the study area.

Keywords: Western Ghats; Southern and Northern peaks; Rainfall; Precipitation Indices; Climate Change

TABLE OF CONTENTS

Chapter 1. INTRODUCTION	1
Chapter 2. REVIEW OF LITERATURE	6
Chapter 3. MATERIALS AND METHODS	
3.1. Study Area	12
3.2. Data Collection	13
3.3. Data Analysis	13
3.3.1. Kalman smoothing for imputation of missing observation	14
3.3.2. Trend Analysis	14
3.3.3. Extreme Precipitation Indices Analysis	18
3.3.4. ANOVA Single Factor	19
3.3.5. T – Test: Two-Sample Assuming Equal Variance	21
Chapter 4. RESULTS AND DISCUSSIONS	
4.1. Trend analysis of spatiotemporal movement of rainfall pattern across stations in	
Northern and Southern peaks of rainfall at Western Ghat region in Kerala, India.	23
4.1.1. Rainfall pattern in the stations of Southern Peaks - Idukki and	
Pathanamthitta districts.	23
4.1.2. Rainfall pattern in the stations of Northern peaks - Wayanad district.	53
4.1.3. Analysis of Rainfall Annual Averages using Spatial Map of Southern and Northern Peaks of Rainfall.	77
4.2. Trend Analysis of Precipitation Indices across the stations in Southern and	
Northern peaks of rainfall at Western Ghat region in Kerala, India.	80
4.2.1. Comparison of consecutive dry days (CDD) between Southern and Northern	
Peaks of rainfall.	80
4.2.2. Comparison of consecutive wet days (CWD) between Southern and	
Northern Peaks of rainfall.	85
4.2.3. Comparison of $PR \ge 1(PRge1)$ between Southern and Northern Peaks of	90
rainfall.	20
4.2.4. Comparison of PR ≥ 2.5 (PRge2.5) between Southern and Northern Peaks of rainfall.	95

4.2.5. Comparison of Annual sum of daily precipitation ≥ 1.0 mm (PRCPTOT)	
between Southern and Northern Peaks of rainfall.	100
4.2.6. Comparison of Annual number of days when precipitation ≥ 10 mm	
(R10mm) between Southern and Northern Peaks of rainfall.	105
4.2.7. Comparison of Annual number of days when precipitation ≥ 20	100
mm(R20mm) between Southern and Northern Peaks of rainfall.	110
4.2.8. Comparison of Annual number of days when precipitation ≥ 30 mm	110
(R30mm) between Southern and Northern Peaks of rainfall.	
4.2.9. Comparison of Annual sum of daily precipitation > 95th percentile (R95p)	115
between Southern and Northern Peaks of rainfall.	
4.2.10. Comparison of 100*r95p / PRCPTOT between Southern and Northern	120
Peaks of rainfall.	125
4.2.11. Comparison of Annual sum of daily precipitation > 99th percentile (R99p)	
between Southern and Northern Peaks of rainfall.	130
4.2.12. Comparison of 100*r99p / PRCPTOT between Southern and Northern	
Peaks of rainfall.	135
4.2.13. Comparison of Maximum annual 1-day precipitation total (RX1day)	155
between Southern and Northern Peaks of rainfall.	140
4.2.14. Comparison of Maximum annual 3-day precipitation total (RX3day)	
between Southern and Northern Peaks of rainfall.	145
4.2.15. Comparison of Maximum annual 5-day precipitation total (RX5day)	
between Southern and Northern Peaks of rainfall.	150
4.2.16. Comparison of Simple Precipitation Intensity Index (SDII) between	100
Southern and Northern Peaks of rainfall.	155
4.2.17. Comparison of Standardised Precipitation-Evapotranspiration Index-3	155
months (SPEI3) between Southern and Northern Peaks of rainfall.	1.00
4.2.18. Comparison of Standardised Precipitation-Evapotranspiration Index-6	160
months (SPEI6) between Southern and Northern Peaks of rainfall.	165
4.2.19. Comparison of Standardised Precipitation-Evapotranspiration Index-12	
months (SPEI12) between Southern and Northern Peaks of rainfall.	170
4.2.20. Comparison of Standardised Precipitation Index-3 months (SPI3) between	
Southern and Northern Peaks of rainfall.	175

4.2.21. Comparison of Standardised Precipitation Index-6 months (SPI6) between	
Southern and Northern Peaks of rainfall.	180
4.2.22. Comparison of Standardised Precipitation Index-12 months (SPI12)	
between Southern and Northern Peaks of rainfall.	185
4.2.23. Analysis of Precipitation Indices using Spatial Map of Southern and	
Northern Peaks of Rainfall.	190
4.3. Analyzing the Rainfall Significance between Southern and Northern Peaks Using	
Precipitation Indices.	214
4.3.1. Southern peak- Significance of precipitation indices.	214
4.3.2. Northern peak- Significance of precipitation indices.	214
4.3.3. Southern vs Northern peak- Significance of precipitation indices.	222
Chapter 5. CONCLUSION	228
Chapter 6. REFERENCES	231

LIST OF TABLES

Table 3.3 Extreme precipitation indices with description and their units.	18
Table 4.1.1: The summary statistics of rainfall at Idukki station of Southern Peak.	23
Table 4.1.2: Trend analysis for Idukki station of Southern Peak.	25
Table 4.1.3: The summary statistics of rainfall at Munnar station of Southern Peak.	29
Table 4.1.4: Trend analysis for Munnar station of Southern Peak.	31
Table 4.1.5: The summary statistics of rainfall at Peermade station of Southern Peak.	35
Table 4.1.6: Trend analysis for Peermade station of Southern Peak.	37
Table 4.1.7: The summary statistics of rainfall at Thodupuzha station of Southern Peak.	41
Table 4.1.8: Trend analysis for Thodupuzha station of Southern Peak.	43
Table 4.1.9: The summary statistics of rainfall at Konni station of Southern Peak.	47
Table 4.1.10: Trend analysis for Konni station of Southern Peak.	49
Table 4.1.11: The summary statistics of rainfall at Ambalavayal station of Northern Peak.	54
Table 4.1.12: Trend analysis for Ambalavayal station of Northern Peak.	55
Table 4.1.13: The summary statistics of rainfall at Kuppadi station of Northern Peak.	59
Table 4.1.14: Trend analysis for Kuppadi station of Northern Peak.	61
Table 4.1.15: The summary statistics of rainfall at Mananthavady station of Northern Peak.	65
Table 4.1.16: Trend analysis for Mananthavady station of Northern Peak.	67
Table 4.1.17: The summary statistics of rainfall at Vythiri station of Northern Peak.	71
Table 4.1.18: Trend analysis for Vythiri station of Northern Peak.	73
Table 4.2.1: Descriptive statistics for Consecutive Dry Days (CDD).	81
Table 4.2.2: Trend analysis for Consecutive Dry Days (CDD).	83
Table 4.2.3: Descriptive statistics for Consecutive Wet Days (CWD).	86
Table 4.2.4: Trend analysis for Consecutive Wet Days (CWD).	88
Table 4.2.5: Descriptive statistics for $PR \ge 1(PRge1)$.	91
Table 4.2.6: Trend analysis for $PR \ge 1(PRge1)$.	93
Table 4.2.7: Descriptive statistics for $PR \ge 2.5(PRge2.5)$.	96
Table 4.2.8: Trend analysis for $PR \ge 2.5(PRge2.5)$.	98

Table 4.2.9: Descriptive statistics for Annual sum of daily precipitation ≥ 1.0 mm	
(PRCPTOT).	101
Table 4.2.10: Trend analysis for Annual sum of daily precipitation >= 1.0 mm (PRCPTOT).	103
Table 4.2.11: Descriptive statistics for annual number of days when precipitation ≥ 10 mm	
(R10mm).	106
Table 4.2.12: Trend analysis for annual number of days when precipitation ≥ 10 mm	
(R10mm).	108
Table 4.2.13: Descriptive statistics for annual number of days when precipitation ≥ 20 mm	
(R20mm).	111
Table 4.2.14: Trend analysis for annual number of days when precipitation ≥ 20 mm	
(R20mm).	113
Table 4.2.15: Descriptive statistics for annual number of days when precipitation ≥ 30 mm	
(R30mm).	116
Table 4.2.16: Trend analysis for annual number of days when precipitation ≥ 30 mm	
(R30mm).	118
Table 4.2.17: Descriptive statistics for annual sum of daily precipitation > 95th percentile	
(R95p).	121
Table 4.2.18: Trend analysis for annual sum of daily precipitation > 95th percentile (R95p).	123
Table 4.2.19: Descriptive statistics for 100*r95p / PRCPTOT.	126
Table 4.2.20: Trend analysis for 100*r95p / PRCPTOT.	128
Table 4.2.21: Descriptive statistics for annual sum of daily precipitation > 99th percentile	
(R99p).	131
Table 4.2.22: Trend analysis for annual sum of daily precipitation > 99th percentile (R99p).	133
Table 4.2.23: Descriptive statistics for 100*r99p / PRCPTOT.	136
Table 4.2.24: Trend analysis for 100*r99p / PRCPTOT.	138
Table 4.2.25: Descriptive statistics for maximum annual 1-day precipitation total (RX1day).	141
Table 4.2.26: Trend analysis for maximum annual 1-day precipitation total (RX1day).	143
Table 4.2.27: Descriptive statistics for maximum annual 3-day precipitation total (RX3day).	146
Table 4.2.28: Trend analysis for maximum annual 3-day precipitation total (RX3day).	148

Table 4.2.29: Descriptive statistics for maximum annual 5-day precipitation total (RX5ay).	151
Table 4.2.30: Trend analysis for maximum annual 5-day precipitation total (RX5day).	153
Table 4.2.31: Descriptive statistics for Simple Precipitation Intensity Index (SDII).	156
Table 4.2.32: Trend analysis for Simple Precipitation Intensity Index (SDII).	158
Table 4.2.33: Descriptive statistics for Standardised Precipitation-Evapotranspiration Index-3	
months (SPEI3).	161
Table 4.2.34: Trend analysis for Standardised Precipitation-Evapotranspiration Index-3	
months (SPEI3).	163
Table 4.2.35: Descriptive statistics for Standardised Precipitation-Evapotranspiration Index-6	
months (SPEI6).	166
Table 4.2.36: Trend analysis for Standardised Precipitation-Evapotranspiration Index-6	
months (SPEI6).	168
Table 4.2.37: Descriptive statistics for Standardised Precipitation-Evapotranspiration Index-	
12 months (SPEI12).	171
Table 4.2.38: Trend analysis for Standardised Precipitation-Evapotranspiration Index-12	
months (SPEI12).	173
Table 4.2.39: Descriptive statistics for Standardised Precipitation Index-3 months (SPI3).	176
Table 4.2.40: Trend analysis for Standardised Precipitation Index-3 months (SPI3).	178
Table 4.2.41: Descriptive statistics for Standardised Precipitation Index-6 months (SPI6).	181
Table 4.2.42: Trend analysis for Standardised Precipitation Index-6 months (SPI6).	183
Table 4.2.43: Descriptive statistics for Standardised Precipitation Index-12 months (SPI12).	186
Table 4.2.44: Trend analysis for Standardised Precipitation Index-12 months (SPI12).	188
Table 4.3.1: Summary of ANOVA- Single Factor analysis on Precipitation indices of Southern	
Peak.	215
Table 4.3.2: Summary of ANOVA- Single Factor analysis on Precipitation indices of Northern	
Peak.	220
Table 4.3.3: Summary of T- test analysis on Precipitation indices for Southern and Northern	
Peak.	224

LIST OF FIGURES

Figure 3.1: Location map of study area – Southern and Northern Peak with rainfall stations.	13
Figure 4.1.1: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Idukki station.	24
Figure 4.1.2: Long-term movement of rainfall trend during Summer in Idukki station.	26
Figure 4.1.3: Long-term movement of rainfall trend during South West Monsoon in Idukki	
station.	27
Figure 4.1.4: Long-term movement of rainfall trend during North East Monsoon in Idukki	_,
station.	28
Figure 4.1.5: Long-term movement of rainfall trend during Winter in Idukki station.	28
Figure 4.1.6: Long-term movement of rainfall trend during Annual in Idukki station.	29
Figure 4.1.7: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Munnar station.	30
Figure 4.1.8: Long-term movement of rainfall trend during Summer in Munnar station.	32
Figure 4.1.9: Long-term movement of rainfall trend during South West Monsoon in Munnar	
station.	33
Figure 4.1.10: Long-term movement of rainfall trend during North East Monsoon in Munnar	
station.	34
Figure 4.1.11: Long-term movement of rainfall trend during Winter in Munnar station.	34
Figure 4.1.12: Long-term movement of rainfall trend during Annual in Munnar station.	35
Figure 4.1.13: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Peermade station.	36
Figure 4.1.14: Long-term movement of rainfall trend during Summer in Peermade station.	38
Figure 4.1.15: Long-term movement of rainfall trend during South West Monsoon in Peermade	
station.	39
Figure 4.1.16: Long-term movement of rainfall trend during North East Monsoon in Peermade	
station.	40
Figure 4.1.17: Long-term movement of rainfall trend during Winter in Peermade station.	40
Figure 4.1.18: Long-term movement of rainfall trend during Annual in Peermade station.	41
Figure 4.1.19: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Thodupuzha station.	42

Figure 4.1.20: Long-term movement of rainfall trend during Summer in Thodupuzha station.	44
Figure 4.1.21: Long-term movement of rainfall trend during South West Monsoon in	
Thodupuzha station.	45
Figure 4.1.22: Long-term movement of rainfall trend during North East Monsoon in	
Thodupuzha station.	46
Figure 4.1.23: Long-term movement of rainfall trend during Winter in Thodupuzha station.	46
Figure 4.1.24: Long-term movement of rainfall trend during Annual in Thodupuzha station.	47
Figure 4.1.25: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Konni station.	48
Figure 4.1.26: Long-term movement of rainfall trend during Summer in Konni station.	50
Figure 4.1.27: Long-term movement of rainfall trend during South West Monsoon in Konni	
station.	51
Figure 4.1.28: Long-term movement of rainfall trend during North East Monsoon in Konni	
station.	52
Figure 4.1.29: Long-term movement of rainfall trend during Winter in Konni station.	52
Figure 4.1.30: Long-term movement of rainfall trend during Annual in Konni station.	53
Figure 4.1.31: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Ambalavayal station.	54
Figure 4.1.32: Long-term movement of rainfall trend during Summer in Ambalavayal station.	56
Figure 4.1.33: Long-term movement of rainfall trend during South West Monsoon in	
Ambalavayal station.	57
Figure 4.1.34: Long-term movement of rainfall trend during North East Monsoon in	
Ambalavayal station.	58
Figure 4.1.35: Long-term movement of rainfall trend during Winter in Ambalavayal station.	58
Figure 4.1.36: Long-term movement of rainfall trend during Annual in Ambalavayal station.	59
Figure 4.1.37: Graphs representing the Monthly, Seasonal and Annual Standard Deviation from	
Mean value of Kuppadi station.	60
Figure 4.1.38: Long-term movement of rainfall trend during Summer in Kuppadi station.	62
Figure 4.1.39: Long-term movement of rainfall trend during South West Monsoon in Kuppadi	
station.	63
Figure 4.1.40: Long-term movement of rainfall trend during North East Monsoon in Kuppadi	
station.	64
Figure 4.1.41: Long-term movement of rainfall trend during Winter in Kuppadi station.	64

Figure 4.1.42: Long-term movement of rainfall trend during Annual in Kuppadi station.	65
Figure 4.1.43: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Mananthavady station.	66
Figure 4.1.44: Long-term movement of rainfall trend during Summer in Mananthavady	
station.	68
Figure 4.1.45: Long-term movement of rainfall trend during South West Monsoon in	
Mananthavady station.	69
Figure 4.1.46: Long-term movement of rainfall trend during North East Monsoon in	
Mananthavady station.	70
Figure 4.1.47: Long-term movement of rainfall trend during Winter in Mananthavady station.	70
Figure 4.1.48: Long-term movement of rainfall trend during Annual in Mananthavady station.	71
Figure 4.1.49: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Vythiri station.	72
Figure 4.1.50: Long-term movement of rainfall trend during Summer in Vythiri station.	74
Figure 4.1.51: Long-term movement of rainfall trend during South West Monsoon in Vythiri	
station.	75
Figure 4.1.52: Long-term movement of rainfall trend during North East Monsoon in Vythiri	
station.	76
Figure 4.1.53: Long-term movement of rainfall trend during Winter in Vythiri station.	76
Figure 4.1.54: Long-term movement of rainfall trend during Annual in Vythiri station.	77
Figure 4.1.55: Spatial map of rainfall peaks - Mapping Annual Rainfall Average for Southern	
and Northern peaks of rainfall for a period of 1997-2022 (26 years).	78
Figure 4.2.1: Graphs representing Consecutive Dry Days (CDD) deviation from mean values	
for stations of Southern and Northern Peaks of rainfall.	82
Figure 4.2.2: Graphical trend analysis of Consecutive Dry Days (CDD) for stations of	
Southern and Northern Peaks of rainfall.	85
Figure 4.2.3: Graphs representing Consecutive Wet Days (CWD) deviation from mean values	
for stations of Southern and Northern Peaks of rainfall.	87
Figure 4.2.4: Graphical trend analysis of Consecutive Wet Days (CWD) for stations of	
Southern and Northern Peaks of rainfall.	90
Figure 4.2.5: Graphs representing $PR \ge 1(PRge1)$ deviation from mean values for stations	20
of Southern and Northern Peaks of rainfall.	92

Figure 4.2.6: Graphical trend analysis of $PR \ge 1(PRge1)$ for stations of Southern and	
Northern Peaks of rainfall.	95
Figure 4.2.7: Graphs representing $PR \ge 2.5(PRge2.5)$ deviation from mean values for	
stations of Idukki and Wayanad districts.	97
Figure 4.2.8: Graphical trend analysis of $PR \ge 2.5(PRge2.5)$ for stations of Idukki and	
Wayanad district.	100
Figure 4.2.9: Graphs representing annual sum of daily precipitation >= 1.0 mm (PRCPTOT)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	102
Figure 4.2.10: Graphical trend analysis of annual sum of daily precipitation >= 1.0 mm	
(PRCPTOT) for stations of Southern and Northern Peaks of rainfall.	105
Figure 4.2.11: Graphs representing annual number of days when precipitation >= 10 mm	
(R10mm) deviation from mean values for stations of Southern and Northern Peaks of rainfall.	107
Figure 4.2.12: Graphical trend analysis of annual number of days when precipitation ≥ 10	
mm (R10mm) for stations of Southern and Northern Peaks of rainfall.	110
Figure 4.2.13: Graphs representing annual number of days when precipitation >= 20 mm	
(R20mm) deviation from mean values for stations of Southern and Northern Peaks of rainfall.	112
Figure 4.2.14: Graphical trend analysis of annual number of days when precipitation ≥ 20	
mm (R20mm) for stations of Southern and Northern Peaks of rainfall.	115
Figure 4.2.15: Graphs representing annual number of days when precipitation >= 30 mm	
(R30mm) deviation from mean values for stations of Southern and Northern Peaks of rainfall.	117
Figure 4.2.16: Graphical trend analysis of annual number of days when precipitation ≥ 30	
mm (R30mm) for stations of Southern and Northern Peaks of rainfall.	120
Figure 4.2.17: Graphs representing annual sum of daily precipitation > 95th percentile (R95p)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	122
Figure 4.2.18: Graphical trend analysis of annual sum of daily precipitation > 95th percentile	
(R95p) for stations of Southern and Northern Peaks of rainfall.	125
Figure 4.2.19: Graphs representing 100*r95p / PRCPTOT deviation from mean values for	
stations of Southern and Northern Peaks of rainfall.	127
Figure 4.2.20: Graphical trend analysis of 100*r95p / PRCPTOT for stations of Southern and	
Northern Peaks of rainfall.	130
Figure 4.2.21: Graphs representing annual sum of daily precipitation > 99th percentile (R99p)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	132

Figure 4.2.22: Graphical trend analysis of annual sum of daily precipitation > 99th percentile	
(R99p) for stations of Southern and Northern Peaks of rainfall.	135
Figure 4.2.23: Graphs representing 100*r99p / PRCPTOT deviation from mean values for	
stations of Southern and Northern Peaks of rainfall.	137
Figure 4.2.24: Graphical trend analysis of 100*r99p / PRCPTOT for stations of Southern	
and Northern Peaks of rainfall.	140
Figure 4.2.25: Graphs representing maximum annual 1-day precipitation total (RX1day)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	142
Figure 4.2.26: Graphical trend analysis of maximum annual 1-day precipitation total	
(RX1day) for stations of Southern and Northern Peaks of rainfall.	145
Figure 4.2.27: Graphs representing maximum annual 3-day precipitation total (RX3day)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	147
Figure 4.2.28: Graphical trend analysis of maximum annual 3-day precipitation total	
(RX3day) for stations of Southern and Northern Peaks of rainfall.	150
Figure 4.2.29: Graphs representing maximum annual 5-day precipitation total (RX5day)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	152
Figure 4.2.30: Graphical trend analysis of maximum annual 5-day precipitation total	
(RX5day) for stations of Southern and Northern Peaks of rainfall.	155
Figure 4.2.31: Graphs representing Simple Precipitation Intensity Index (SDII) deviation	
from mean values for stations of Southern and Northern Peaks of rainfall.	157
Figure 4.2.32: Graphical trend analysis of Simple Precipitation Intensity Index (SDII) for	
stations of Southern and Northern Peaks of rainfall.	160
Figure 4.2.33: Graphs representing Standardised Precipitation-Evapotranspiration Index-3	
months (SPEI3) deviation from mean values for stations of Southern and Northern Peaks of	
rainfall.	162
Figure 4.2.34: Graphical trend analysis of Standardised Precipitation-Evapotranspiration	
Index-3 months (SPEI3) for stations of Southern and Northern Peaks of rainfall.	165
Figure 4.2.35: Graphs representing Standardised Precipitation-Evapotranspiration Index-6	
months (SPEI6) deviation from mean values for stations of Southern and Northern Peaks of	
rainfall.	167
Figure 4.2.36: Graphical trend analysis of Standardised Precipitation-Evapotranspiration	
Index-6 months (SPEI6) for stations of Southern and Northern Peaks of rainfall.	170

Figure 4.2.37: Graphs representing Standardised Precipitation-Evapotranspiration Index-	
12 months (SPEI12) deviation from mean values for stations of Southern and Northern	
Peaks of rainfall.	172
Figure 4.2.38: Graphical trend analysis of Standardised Precipitation-Evapotranspiration	
Index-12 months (SPEI12) for stations of Southern and Northern Peaks of rainfall.	175
Figure 4.2.39: Graphs representing Standardised Precipitation Index-3 months (SPI3)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	177
Figure 4.2.40: Graphical trend analysis of Standardised Precipitation Index-3 months	
(SPI3) for stations of Southern and Northern Peaks of rainfall.	180
Figure 4.2.41: Graphs representing Standardised Precipitation Index-6 months (SPI6)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	182
Figure 4.2.42: Graphical trend analysis of Standardised Precipitation Index-6 months	
(SPI6) for stations of Southern and Northern Peaks of rainfall.	185
Figure 4.2.43: Graphs representing Standardised Precipitation Index-12 months (SPI12)	
deviation from mean values for stations of Southern and Northern Peaks of rainfall.	187
Figure 4.2.44: Graphical trend analysis of Standardised Precipitation Index-6 months	
(SPI6) for stations of Southern and Northern Peaks of rainfall.	190
Figure 4.2.45: Spatial map of rainfall peaks - Mapping annual average of Consecutive Dry	
Days (CDD) for Southern and Northern peaks of rainfall for a period of 1997-2022 (26	
years).	191
Figure 4.2.46: Spatial map of rainfall peaks - Mapping annual average of Consecutive Wet	
Days (CWD) for Southern and Northern peaks of rainfall for a period of 1997-2022 (26	
years).	192
Figure 4.2.47: Spatial map of rainfall peaks - Mapping annual sum of daily precipitation	
>= 1.0 mm (PRCPTOT) for stations of Southern and Northern Peaks of rainfall for a period	
of 1997-2022 (26 years).	193
Figure 4.2.48: Spatial map of rainfall peaks - Mapping annual average of PRCP \geq threshold	
value 1mm (PRge1) for Southern and Northern peaks of rainfall for a period of 1997-2022	
(26 years).	194
Figure 4.2.49: Spatial map of rainfall peaks - Mapping annual average of $PRCP \ge$ threshold	
value 2.5mm (PRge2.5) for Southern and Northern peaks of rainfall for a period of 1997-	
2022 (26 years).	195

Figure 4.2.50: Spatial map of rainfall peaks - Mapping annual average of Annual count of	
days when PRCP \geq 10mm (R10mm) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	100
Figure 4.2.51: Spatial map of rainfall peaks - Mapping annual average of Annual count of	196
days when PRCP ≥ 20 mm (R20mm) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	197
Figure 4.2.52: Spatial map of rainfall peaks - Mapping annual average of Annual count of	
days when PRCP \geq 30mm (R30mm) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	198
Figure 4.2.53: Spatial map of rainfall peaks - Mapping annual average of Annual total	
PRCP when RR > 95th percentile (R95p) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	199
Figure 4.2.54: Spatial map of rainfall peaks - Mapping annual average of Annual total	
PRCP when RR > 95p (R95pTOT) for Southern and Northern peaks of rainfall for a period	
of 1997-2022 (26 years).	200
Figure 4.2.55: Spatial map of rainfall peaks - Mapping annual average of Annual total PRCP	
when RR > 99th percentile (R99p) for Southern and Northern peaks of rainfall for a period	
of 1997-2022 (26 years).	201
Figure 4.2.56: Spatial map of rainfall peaks - Mapping annual average of Annual total	
PRCP when RR > 99p (R99pTOT) for Southern and Northern peaks of rainfall for a period	
of 1997-2022 (26 years).	202
Figure 4.2.57: Spatial map of rainfall peaks - Mapping annual average of Monthly	
maximum 1-day precipitation (RX1day) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	203
Figure 4.2.58: Spatial map of rainfall peaks - Mapping annual average of Monthly	
maximum 3-day precipitation (RX3day) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	204
Figure 4.2.59: Spatial map of rainfall peaks - Mapping annual average of Monthly	
maximum 5-day precipitation (RX5day) for Southern and Northern peaks of rainfall for a	
	205
period of 1997-2022 (26 years).	
Figure 4.2.60: Spatial map of rainfall peaks - Mapping annual average of Simple	
precipitation intensity index (SDII) for Southern and Northern peaks of rainfall for a period	206
of 1997-2022 (26 years).	200

Figure 4.2.61: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Evapotranspiration Index- 3 months (SPEI3) for Southern and Northern	
peaks of rainfall for a period of 1997-2022 (26 years).	207
Figure 4.2.62: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Evapotranspiration Index-6 months (SPEI6) for Southern and Northern	
peaks of rainfall for a period of 1997-2022 (26 years).	208
Figure 4.2.63: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Evapotranspiration Index-12months (SPEI12) for Southern and Northern	
peaks of rainfall for a period of 1997-2022 (26 years).	209
Figure 4.2.64: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Index-3months (SPI3) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	210
Figure 4.2.65: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Index-6months (SPI6) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	211
Figure 4.2.66: Spatial map of rainfall peaks - Mapping annual average of Standardised	
Precipitation Index-12months (SPI12) for Southern and Northern peaks of rainfall for a	
period of 1997-2022 (26 years).	212

IDENTIFICATION OF SOURCE OF POLLUTION AND REMEDIES FOR THEVARA PERANDOOR CANAL IN KOCHI

A project report submitted to the

UNIVERSITY OF CALICUT

In partial requirements for the award degree of Master of Science in

ENVIRONMENTAL SCIENCE

by

GANASHYAM T S

REGISTER NUMBER: CCAVMES010

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Er. SREELAKSHMI P.B

Environmental Engineer

Erankulam District Office - 1

Kerala State Pollution Control Board

&

DR. MANJU N J

Assistant Professor

Department of Geology and Environmental Science

Christ College (Autonomous), Irinjalakuda

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled **Identification of source of pollution and remedies for Thevara Perandoor canal in Kochi** is the bonafide work of **Mr.Ganashyam T S** under the guidance of **Dr. Manju N J** Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirements for the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin k Jose Head of the Department Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

 1.

 2.

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled **Identification of source of pollution and remedies for Thevara Perandoor canal in Kochi** is the bonafide work of **Mr.Ganashyam T S** under the guidance of **Dr. Manju N J** Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirements for the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut during the academic year 2021-2023.

Dr. Manju N J Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomus), Irinjalakuda

KSPCB CERTIFICATE

Phone: 0484-2207783, 84, 85, 86 Email: pcbdo1@gmail.com Website: www.keralapcb.nic.in

KERALA STATE POLLUTION CONTROL BOARD DISTRICT OFFICE - 1, ERNAKULAM GANDHINAGAR, KOCHI - 682 020 കേരള സംസ്ഥാന മലിനീകരണ നിയന്ത്രണ ബോർഡ് ജില്ലാ ഓഫീസ് - 1, എറണാകുളം ഗാന്ധിനഗർ, കൊച്ചി - 682 020

KERALA

Date: 10/07/2023

CERTIFICATE

This is to certify that **Mr. Ganashyam T. S. , Reg. No. CCAVMES010** has participated in the project conducted by the Board for the "Identification of **Source of Pollution and Remedies for Thevara Perandoor Canal in Kochi**" under my supervision and guidance in partial requirement for the award of Master of Science in Environment Science, Christ College, Irinjalakuda through University of Calicut during the Academic year 2021-2023.

Luy

ENVIRÓNMENTAL ENGINEER

4

DECLARATION

I hereby declare that this project report titled **Identification of source of pollution and remedies for Thevara Perandoor canal in Kochi** is a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda Ganashyam T S Date: CCAVMES010

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, and Dr.Subin K Jose for enabling me to carry out this work.

It has been a rare privilege for me to have worked under Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda. I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank State Pollution Control Board, Ernakulam District office one, where my project has been done. I give special obligation and indebtedness to Environmental Engineer Sreelakshmi.P.B, Assistant Environmental Engineer Fariz .K.R of Kerala State Pollution Control Board, Ernakulam District office 1. I am very thankful to my team members Williams Raphael, Ashin Saji and Manu Simon.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of State Pollution Control Board, Ernakulam District Office 1, who cooperated with my work.

ABSTRACT

In recent years, due to rapid industrialization and advanced agricultural activities, environmental degradation is becoming a major problem. Water is one of the most important and basic natural resources used in industry, agriculture, household and business. These activities result in the discharge of sewage, so accurate sewage analysis is critical to maintaining human health and safety. The sewage load of the Thevara Perandoor canal in Kochi is increased by water from all the three sectors viz. domestic, industrial and agricultural. For this purpose, three distinct sample sites of sewers adjacent to the canal were selected, analysed for sewage water quality indicators, and an inspection was made in an apartment near the canal to ensure that there was a major leak in the canal. This study was conducted to determine the surface water quality of Perandoor canal in Kochi by determining some water quality parameters (pH, EC, DO, TDS, BOD5, COD etc.). This indicates that several anthropogenic sources are responsible for the degradation of surface water quality in this region. This study reflects the actual scenario of surface water quality of Perandoor Canal, thus it helps policy planners and decision makers to adopt appropriate treatment and mitigation strategies for sustainable management of water resources in Kochi urban areas.

CONTENT

1. INTRODUCTION	11
1.1. Thevara Perandoor Canal	12
1.2. Water Quality Standards	12
1.3. Location	14
1.4. Present Condition	15
1.5. Importance	16
2. REVIEW OF LITERATURE	16
3. MATERIALS AND METHODS	18
3.1. Study Area	18
3.2. Mapping of Apartment	19
3.3. Drain Sampling	27
4. RESULT AND DISCUSSION	29
4.1. Result of sample taken from Apartment	29
4.2. Result of Drain	31
5. CONCLUSION	35
6. REFERENCE	

LIST OF TABLES

Table 02: Population density.18Table 03: Coordinates of sampling Site.27Table 04: STP Standards used by KSPCB.29Table 05: Result of analysis – apartment (Nagpal).29Table 06: Result of analysis – apartment (Abad).30Table 07: Result of analysis - Drain.31Table 08: Heavy Metal content of drain.35	Table 01: Water Quality Standards	13
Table 04: STP Standards used by KSPCB	Table 02: Population density	18
Table 05: Result of analysis – apartment (Nagpal)	Table 03: Coordinates of sampling Site	27
Table 06: Result of analysis – apartment (Abad)	Table 04: STP Standards used by KSPCB	29
Table 07: Result of analysis - Drain	Table 05: Result of analysis – apartment (Nagpal)	29
	Table 06: Result of analysis – apartment (Abad)	30
Table 08: Heavy Metal content of drain35	Table 07: Result of analysis - Drain	31
	Table 08: Heavy Metal content of drain	35

LIST OF FIGURES

Figure 01: Map of Perandoor canal	14
Figure 02: Map of Thevara canal	15
Figure 03-26: Inspection of Apartment	21-26
Figure 25-27: Perandoor canal – sampling	

ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF-PARAMBIKULAM TIGER RESERVE

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

GREESHMA C B

Reg. No: CCAVMES011

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr REKHA V B

ASSISTANT PROFESSOR

DEPARTMENT of GEOLOGY and ENVIRONMENTAL SCIENCE

Christ College (Autonomous) Irinjalakuda

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertationentitled "ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF–PARAMBIKULAM TIGER RESERVE" is an authentic record of the work carried out by Ms Greeshma C B under guidance of Dr Deepu Sivadas Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Subin K Jose

Asst. Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1.	 •••	 •••	 •••	••••	 	
2.	 	 	 		 	

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertationentitled "ASSESSMENT OF EFFECTIVENESS OF **PROTECTED AREA MANAGEMENT OF –PARAMBIKULAM TIGER RESERVE**" is an authentic record of the work carried out by **Ms. Greeshma C B** under co-guidance of **Dr Rekha V B**, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I hereby declare that the project work entitled "Assessment of Effectiveness of Protected Area Management –Parambikulam Tiger Reserve" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to July 2023 under the guidance and supervision of **Dr Deepu Sivadas** Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Greeshma C B

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr Deepu Sivadas, Scientist B, Kerala Forest Research Institute** for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I express my gratitude to my project guide **Dr Rekha V.B**, Asst. Professor, Dept. of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable guidance and encouragement throughout the course of this work. I place on record my profound gratitude to **Dr Subin K Jose**, Head of the Department of Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable advice and support throughout this project work.

I express my sincere thanks to all staffs of Forest Ecology department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

My acknowledgment would not be complete without acknowledging my parents. Any attempt at any level can't be satisfactorily completed without the support, guidance, and constant inspiration of my parents.

Greeshma C B

ABSTRACT

The Parambikulam Tiger Reserve (PTR) in the Western Ghats of India is a vital sanctuary for preserving the region's rich biodiversity and harbouring a significant population of tigers. Through a mixed-methods approach, including field surveys, data analysis, and stakeholder interviews, this research assesses various aspects of PTR's management. The study analyzes the status of the tiger population, biodiversity conservation efforts, habitat protection measures, community engagement, and the impact of ecotourism on conservation.

Results indicate that PTR's management has been successful in maintaining the core area as an inviolate zone, providing a secure breeding ground for tigers and preserving the natural integrity of the reserve. Collaborative efforts with local communities through Ecological Development Committees (EDCs) have fostered positive attitudes towards conservation, promoting coexistence between wildlife and people.Systematic monitoring of the tiger population has facilitated a comprehensive understanding of population dynamics, aiding informed decision-making for conservation strategies. Partnerships with interstate forest departments and regular habitat improvement programs have further fortified PTR's conservation endeavours.

LIST OF CONTENTS

1. INTRODUCTION	1
2. REVIEW OF LITERATUR	7
3. MATERIALS AND METHODS	16
3.1 STUDY AREA	16
3.2 METHEDOLOGY	19
3.2.1. STUDY DESIGN	22
3.2.2 . SAMPLING	22
3.2.3. DATA COLLECTION INSTRUMENTS	22
3.2.4 . ETHICAL CONSIDERATIONS	23
3.2.5. DATA ANALYSIS	23
3.2.6. QUESTIONNAIRE	24
4. RESULT	30
4.1. DESCRIPTION OF THE CORE, BUFFER AND ADJOINING AREAS	30
4.2. DISTRIBUTION OF TIGER, CO-PREDATORS AND THEIR PREY	31
4.3. MANAGEMENT OF WATER SOURCES/SOIL CONSERVATION	33
4.4. FIRE PROTECTION AND MANAGEMENT	35
4.5. MANAGEMENT GOALS	37
4.6. MANAGEMENT OBJECTIVES	38
4.7. SWOT ANALYSIS	39
5. DISCUSSION AND CONCLUSION	47
6. REFERENCES	49

LIST OF FIGURES

Figure 1.	Map of Parambikulam Tiger Reserve	17
Figure 2.	Parambikulam landscape	18
Figure 3.	Office of Deputy Director, Parambikulam Tiger Reserve	20
Figure 4.	Office of Karimala and Parambikulam Range	20
Figure 5.	Sungam Range Office	20
Figure 6.	Orukomban Range Office	21
Figure 7.	Tunakadavu Dam Reservoir	21
Figure 8.	Moist Deciduous Forest	21

UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF ARIMPUR PANCHAYATH IN THRISSUR

A Dissertation Submitted to

THE UNIVERSITY OF CALICUT, THENHIPALAM

In partial fulfilment of the requirement for the award of the Degree of

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Submitted by

INDRA SASIKUMAR

Reg. no. CCAVMES012

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the Guidance of

Dr SUBIN K JOSE

ASSISSTANT PROFESSOR

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

THRISSUR - 680125

CERTIFICATE

This is to certify that the dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF ARIMPUR PANCHAYATH IN THRISSUR" is a record of original work done by INDRA SASIKUMAR (Reg. No. CCAVMES012), under co-guidance of **Dr Deepu Sivadas** Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi in partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science from Calicut University, Malappuram for the academic year 2021-23. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Subin K Jose

Head, Dept. of Geology and Environmental Science

Examiners:

1	•••	•••	••••	•••••	• • • • • • • • • •	•
2	•••	•••				•

CERTIFICATE

This is to certify that the dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF ARIMPUR PANCHAYATH IN THRISSUR" is a record of original work done by INDRA SASIKUMAR (Reg. No. CCAVMES012), under my supervision in partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science from Calicut University, Malappuram for the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

> Dr. Subin K Jose Project Guide Dept. of Geology and Environmental Science Christ College (autonomous), Irinjalakuda

DECLARATION

I hereby declare that this dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF ARIMPUR PANCHAYATH IN THRISSUR" is a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College, Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda

INDRA SASIKUMAR

Date:

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study. I'm extremely grateful to God almighty, without whose blessing I could not have successfully completed this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, for enabling me to carry out this work and to Dr. Subin K Jose, Head of the Department, for his valuable suggestions for this work.

It has been a rare privilege for me to have worked under Dr.Subin K Jose, Assistant Professor, Department of Geology and Environmental Science, Christ College, Irinjalakuda. I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank Kerala Forest Research Institute, Peechi, Thrissur, where my project has been done. I give special obligation and indebtedness to Dr.Deepu Sivadas, Scientist B, Forest Ecology & Biodiversity Conservation Division, KFRI, Peechi.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of KFRI, Thrissur, who cooperated with my work.

INDRA SASIKUMAR CCAVMES012

LIST OF CONTENTS

CHAPTER 1: INTRODUCTION	1
CHAPTER 2: REVIEW OF LITERATURE	14
CHAPTER 3: MATERIALS AND METHODS	18
CHAPTER 4: RESULTS & DISCUSSION	22
CHAPTER 5: CONCLUSION	66
REFERENCES	69

LIST OF TABLES

Sl.	Table	Contents	Page
No	No		No
1	4.1	Agricultural Biodiversity - Cereals	23
2	4.2	Agricultural Biodiversity - Vegetables	24
3	4.3	Agricultural Biodiversity - Tubers	25
4	4.4	Agricultural Biodiversity - Aromatic Plants	26
5	4.5	Agricultural Biodiversity - Cash Crops	26
6	4.6	Fruits	26
7	4.7	Weeds	27
8	4.8	Insects	28
9	4.9	Homestead Biodiversity	29
10	4.10	Medicinal Plants	31
11	4.11	Ornamental Plants	33
12	4.12	Timber Trees	34
13	4.13	Domestic Plants	35
14	4.14	Aquatic Plants	36
15	4.15	Agricultural Biodiversity	37

43
46
47
48
49
_

LIST OF FIGURES

Sl.	Fig.	Contents	Page
No	No		No
1	3.1	Watershed Area of Arimpur Panchayat	20
2	4.1	Floral Diversity of Arimpur Panchayat	51
3	4.2	Medicinal Plants of Arimpur Panchayat	52
4	4.3	Medicinal Plants of Arimpur Panchayat	53
5	4.4	Ornamental Plants of Arimpur Panchayat	54
6	4.5	Weed Plants of Arimpur Panchayat	55

tlands: Parakulam 64 s: Chaladi, Pazhamkole 64 lands: Pachakulam 64
lands: Pachakulam 64
tlands: Vilukulam 64
ands: Thekkepadam 64
nds: Chadayankulam 64
ds: Aarumuri padavu 65
nds: Karuvalikulam 65
tlands: Andikulam 65
ands: Chaalukulam 65

Assessing the Impact of the Climate Change on Key Hydrological Variables in Kerala, India: An Analysis of Trends, Patterns and Interrelationships among Reference Evapotranspiration, Rainfall and Temperature

Dissertation Submitted to

THE UNIVERSITY OF CALICUT

In Partial Fulfilment of the Requirement for the award of

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Submitted by

KRISHNAPRIYA P G

Reg.No: CCAVMES013

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the Guidance of

Dr. Naveena K

Scientist B

Land and Water Management Research Group

Centre for Water Resources Development and Management (KSCSTE-CWRDM)

Kunnamangalam, Kozhikode

March-June 2023

THRISSUR-680125

Assessing the Impact of the Climate Change on Key Hydrological Variables in Kerala, India: An Analysis of Trends, Patterns and Interrelationships among Reference Evapotranspiration, Rainfall and Temperature

By

KRISHNAPRIYA P G

Reg. No: CCAVMES013

Examiners:

1.

2.

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "Assessing the impact of the climate change on key hydrological variables in Kerala, India: An analysis of trends, patterns and Interrelationships among reference evapotranspiration, rainfall and temperature" is an authentic record of work carried out by Ms. KRISHNAPRIYA P G (CCAVMES013) under the guidance of Dr. Naveena K, Scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM) during March 2023 to June 2023 as part of the partial fulfilment of the requirement for the award of Master of Science in Environmental Science under the University of Calicut during the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Subin K Jose

Asst.Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

THRISSUR-680125

CERTIFICATE

I hereby certify that the dissertation entitled "Assessing the impact of the climate change on key hydrological variables in Kerala, India: An analysis of trends, patterns and Interrelationships among reference evapotranspiration, rainfall and temperature" is an authentic record of work carried out by Ms. KRISHNAPRIYA P G (CCAVMES013) under my internal supervision and guidance for the award of Master of Science in Environmental Science under the University of Calicut during the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I Krishnapriya P G hereby declare that this project work entitled "Assessing the impact of the climate change on key hydrological variables in Kerala, India: An analysis of trends, patterns and Interrelationships among reference evapotranspiration, rainfall and temperature" submitted to Calicut university in partial fulfilment of the requirement for the award of the master of science in Environmental Science, in my own work and to the best of my knowledge and belief. It is a record of original research carried out by me under the guidance and supervision of **Dr. Naveena K**, scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM), Kozhikode.

Place:

Date:

Krishnapriya P G

ACKNOWLEDGEMENT

First and foremost, I thank Almighty GOD, for all blessings that he has showed on me for completing this dissertation.

I wish to express my utmost and profound gratitude to my supervising guide **Dr. Naveena K** (Scientist B, Land and Water Management Research Group, Centre for Water Resources Development and Management (CWRDM), Kozhikode) for his valuable guidance, support, understanding, kindness to me throughout my work, I am grateful to him for the constructive comments and careful evaluation of my thesis. It's been a privilege to work under his guidance. I would like to pay my deep sense of gratitude to **Dr. Manoj P. Samuel**, Executive Director, CWRDM, and **Dr. Surendran U**, Principal Scientist and Head of Land and Water Management Research Group, CWRDM, for providing me the opportunity to work in Land and Water Management Research Group and for encouraging me to the highest peak.

I express my immense thanks to **Dr. Subin K Jose,** Assistant professor and HOD, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda, for taking the necessary actions to pursue my Dissertation work in one of the finest Institute in the country.

I specially thank my supervising teacher **Dr. Rekha V B** (Assistant professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda), for the active guidance in this project work.

I will be missing something if I do not extend my admiration and appreciation to all the scientists, project staff, technical staff and apprentices of Land and Water Management Research Group, CWRDM.

It is my privilege to thank my classmates and friends for their love, care, mental and physical help and encouragement during my Research. I am happy to extend my gratitude to all teaching and non-teaching staff in Christ College, Irinjalakuda for their support and necessary actions.

Last but not least, my family, an important inspiration for me. So, with due respect, I express my gratitude to them for always supporting and encouraging me to excel forward and achieve my goal.

KRISHNAPRIYA P G

ABSTRACT

The study analysed rainfall data from 1970 to 2020, as well as maximum and minimum temperature data for the same period, to assess the climate trend in districts of Kerala. Reference evapotranspiration (ETo) was calculated using the Hargreaves method and used for trend analysis. The Hargreaves method is a widely used empirical approach for estimating reference evapotranspiration (ETo) based on temperature data. The Mann-Kendall (MK) test and Sen's slope estimator were employed to examine temporal and spatial variations in monthly, seasonal, and annual series. The distribution of rainfall and Reference Evapotranspiration (ETo) in Kerala can be spatially mapped using the IDW (Inverse Distance Weighted) interpolation method within the ArcGIS environment. Results revealed fluctuating rainfall patterns, increasing temperatures, and a rising trend in ETo. The most significant increase in ETo occurred during winter. Rainfall patterns during the south-west monsoon months undergo distinct shifts, with notable decreases in June and July and a significant increase in September. Moreover, the study observed variations in rainfall patterns across different districts of Kerala during specific months and seasons. Most districts showed an increasing trend in ETo, accompanied by rising minimum and maximum temperatures. The correlation and regression analysis conducted in the study revealed several relationships between climate variables. There was a negative relationship between rainfall (RF) and ETo, indicating that higher ETo values are associated with lower rainfall amounts. Additionally, a positive correlation was observed between maximum temperature and ETo, implying that higher temperatures contribute to increased evapotranspiration. Conversely, a negative correlation was found between minimum temperature and ETo. The findings of this study provide valuable insights into the shifts in rainfall patterns, temperature increases, and rising evapotranspiration rates, which is crucial for developing effective measures to mitigate and adapt to the changing climate in Kerala.

Keywords: Kerala; Trend analysis; Rainfall; Reference Evapotranspiration; Climate change; Temperature.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION	1
1.1. Aim	3
1.2. Objectives	3
1.3. Scope	4
Chapter 2: REVIEW OF LITERATURE	5
2.1. Trend analysis of spatiotemporal movement of rainfall pattern	5
2.2. Evapotranspiration Trends and Their Relationship with Other	
Climatic Variables.	9
Chapter 3: MATERIALS AND METHODS	15
3.1. Study Area	15
3.2. Data Collection	17
3.3. Data Analysis	17
3.3.1. Kalman smoothing for imputation of missing observations	18
3.3.2. Trend Analysis	18
3.3.3. Evapotranspiration models	22
3.3.4. Spatial mapping using IDW interpolation method	23
3.3.5. Pearson Correlation Coefficient	23
3.3.6. Regression Analysis	24
Chapter 4: RESULTS AND DISCUSSION	26
4.1. Trend analysis of spatiotemporal movement of rainfall pattern across	
Kerala	26
4.1.1. Thiruvananthapuram	26
4.1.1.1. Rainfall Statistics of Thiruvananthapuram	26

4.1.1.2. Graphical and Trend Analysis of rainfall over	
Thiruvananthapuram	28
4.1.2. Kollam	33
4.1.2.1. Rainfall Statistics of Kollam	33
4.1.2.2 Graphical and Trend Analysis of rainfall over Kollam	35
4.1.3. Pathanamthitta	39
4.1.3.1. Rainfall Statistics of Pathanamthitta	39
4.1.3.2. Graphical and Trend Analysis of rainfall over	
Pathanamthitta	41
4.1.4. Alappuzha	45
4.1.4.1. Rainfall Statistics of Alappuzha	45
4.1.4.2. Graphical and Trend Analysis of rainfall over Alappuzha	47
4.1.5. Kottayam	51
4.1.5.1. Rainfall Statistics of Kottayam	51
4.1.5.2. Graphical and Trend Analysis of rainfall over Kottayam	53
4.1.6. Idukki	57
4.1.6.1. Rainfall Statistics of Idukki	57
4.1.6.2. Graphical and Trend Analysis of rainfall over Idukki	59
4.1.7. Ernakulam	63
4.1.7.1. Rainfall Statistics of Ernakulam	63
4.1.7.2. Graphical and Trend Analysis of rainfall over Ernakulam	65
4.1.8. Thrissur	69
4.1.8.1. Rainfall Statistics of Thrissur	69
4.1.8.2. Graphical and Trend Analysis of rainfall over Thrissur	71
4.1.9. Palakkad	75
4.1.9.1. Rainfall Statistics of Palakkad	75
4.1.9.2. Graphical and Trend Analysis of rainfall over Palakkad	77

4.1.10. Malappuram	81
4.1.10.1. Rainfall Statistics of Malappuram	81
4.1.10.2. Graphical and Trend Analysis of rainfall over	
Malappuram	83
4.1.11. Kozhikode	87
4.1.11.1. Rainfall Statistics of Kozhikode	87
4.1.11.2. Graphical and Trend Analysis of rainfall over Kozhikode	89
4.1.12. Wayanad	93
4.1.12.1. Rainfall Statistics of Wayanad	93
4.1.12.2. Graphical and Trend Analysis of rainfall over Wayanad	95
4.1.13. Kannur	99
4.1.13.1. Rainfall Statistics of Kannur	99
4.1.13.2. Graphical and Trend Analysis of rainfall over Kannur	101
4.1.14. Kasaragod	105
4.1.14.1. Rainfall Statistics of Kasaragod	105
4.1.14.2. Graphical and Trend Analysis of rainfall over Kasaragod	107
Spatial pattern of annual, seasonal and monthly rainfall of Kerala in	
19 years (2002–2020)	111
4.2. Assessing the trends and pattern of reference evapotranspiration (ETo)	
by Hargreaves method over Kerala.	116
	116
4.2.1. Thiruvananthapuram4.2.1.1. Reference Evapotranspiration (ETo) Statistics	116
of Thiruvananthapuram	116
4.2.1.2. Graphical and Trend Analysis of reference	116
evapotranspiration over Thiruvananthapuram	118
4.2.2. Kollam	122
4.2.2.1. Reference Evapotranspiration (ETo) Statistics of Kollam	122

4.2.2.2. Graphical and Trend Analysis of reference	
evapotranspiration over Kollam	124
4.2.3. Alappuzha	128
4.2.3.1. Reference evapotranspiration (ETo) Statistics of Alappuzha	128
4.2.3.2. Graphical and Trend Analysis of reference	
evapotranspiration over Alappuzha	130
4.2.4. Kottayam	134
4.2.4.1. Reference evapotranspiration Statistics of Kottayam	134
4.2.4.2. Graphical and Trend Analysis of reference	
evapotranspiration over Kottayam	136
4.2.5. Ernakulam	140
4.2.5.1. Reference evapotranspiration Statistics of Ernakulam	140
4.2.5.2. Graphical and Trend Analysis of reference	
evapotranspiration over Ernakulam	142
4.2.6. Thrissur	146
4.2.6.1. Reference evapotranspiration Statistics of Thrissur	146
4.2.6.2. Graphical and Trend Analysis of reference	
evapotranspiration over Thrissur	148
4.2.7. Palakkad	152
4.2.7.1. Reference evapotranspiration Statistics of Palakkad	152
4.2.7.2. Graphical and Trend Analysis of reference	
evapotranspiration over Palakkad	154
4.2.8. Malappuram	158
4.2.8.1. Reference evapotranspiration Statistics of Malappuram	158
4.2.8.2. Graphical and Trend Analysis of reference	
evapotranspiration over Malappuram	160

4.2.9. Kozhikode	164
4.2.9.1. Reference evapotranspiration Statistics of Kozhikode	164
4.2.9.2. Graphical and Trend Analysis of reference	
evapotranspiration over Kozhikode	166
4.2.10. Kannur	170
4.2.10.1. Reference evapotranspiration Statistics of Kannur	170
4.2.10.2. Graphical and Trend Analysis of reference	
evapotranspiration over Kannur	172
Spatial pattern of annual, seasonal and monthly Reference Evapotranspiration	
of Kerala in 19 years (2002–2020)	226
4.3. Determining the Significance of Reference Evapotranspiration in the	
Relationship with weather parameters	231
4.3.1. Correlation Analysis between Reference Evapotranspiration	
(ETo) v/s Rainfall, Maximum Temperature and Minimum	
Temperature	231
4.3.2. Analysing the Relationship between Reference	
Evapotranspiration (ETo) and Rainfall, Maximum Temperature,	
and Minimum Temperature using Regression Analysis	232
4.4. Summary	234
Chapter 5: CONCLUSON	237
REFERENCES	239

LIST OF TABLES

Table 3.1: Details of Meteorological Station	16
Table 4.1: Rainfall statistics of Thiruvananthapuram	27
Table 4.2: Rainfall trend analysis of Thiruvananthapuram	29
Table 4.3: Rainfall statistics of Kollam	33
Table 4.4: Rainfall trend analysis of Kollam	35
Table 4.5: Rainfall statistics of Pathanamthitta	39
Table 4.6: Rainfall trend analysis of Pathanamthitta	41
Table 4.7: Rainfall statistics of Alappuzha	45
Table 4.8: Rainfall trend analysis of Alappuzha	47
Table 4.9: Rainfall statistics of Kottayam	51
Table 4.10: Rainfall trend analysis of Kottayam	53
Table 4.11: Rainfall Statistics of Idukki	57
Table 4.12: Rainfall trend analysis of Idukki	59
Table 4.13: Rainfall Statistics of Ernakulam	63
Table 4.14: Rainfall trend analysis of Ernakulam	65
Table 4.15: Rainfall Statistics of Thrissur	69
Table 4.16: Rainfall trend analysis of Thrissur	71
Table 4.17: Rainfall Statistics of Palakkad	75
Table 4.18: Rainfall trend analysis of Palakkad	77
Table 4.19: Rainfall Statistics of Malappuram	81
Table 4.20: Rainfall trend analysis of Malappuram	83
Table 4.21: Rainfall Statistics of Kozhikode	87
Table 4.22: Rainfall trend analysis of Kozhikode	89
Table 4.23: Rainfall Statistics of Wayanad	93
Table 4.24: Rainfall trend analysis of Wayanad	95
Table 4.25: Rainfall Statistics of Kannur	99

Table 4.26: Rainfall trend analysis of Kannur	101
Table 4.27: Rainfall Statistics of Kasaragod	105
Table 4.28: Rainfall trend analysis of Kasaragod	107
Table 4.29: Reference evapotranspiration statistics of Thiruvananthapuram	116
Table 4.30: Reference evapotranspiration trend analysis of Thiruvananthapuram	118
Table 4.31: Reference evapotranspiration statistics of Kollam	122
Table 4.32: Reference evapotranspiration trend analysis of Kollam	124
Table 4.33: Reference evapotranspiration statistics of Alappuzha	128
Table 4.34: Reference evapotranspiration trend analysis of Alappuzha	130
Table 4.35: Reference evapotranspiration statistics of Kottayam	134
Table 4.36: Reference evapotranspiration trend analysis of Kottayam	136
Table 4.37: Reference evapotranspiration statistics of Ernakulam	140
Table 4.38: Reference evapotranspiration trend analysis of Ernakulam	142
Table 4.39: Reference evapotranspiration statistics of Thrissur	146
Table 4.40: Reference evapotranspiration trend analysis of Thrissur	148
Table 4.41: Reference evapotranspiration statistics of Palakkad	152
Table 4.42: Reference evapotranspiration trend analysis of Palakkad	154
Table 4.43: Reference evapotranspiration statistics of Malappuram	158
Table 4.44: Reference evapotranspiration trend analysis of Malappuram	160
Table 4.45: Reference evapotranspiration statistics of Kozhikode	164
Table 4.46: Reference evapotranspiration trend analysis of Kozhikode	166
Table 4.47: Reference evapotranspiration statistics of Kannur	170
Table 4.48: Reference evapotranspiration trend analysis of Kannur	172
Table 4.49: Correlation Analysis between ETo v/s RF, Maximum Temperature	
and Minimum Temperature	232
Table 4.50: Regression Analysis between ETo v/s RF, Maximum Temperature and	
Minimum Temperature	233

LIST OF FIGURES

Figure 3.1: Location map of Meteorological stations	16
Figure 4.1: Graphs representing the Monthly, Seasonal and Annual Standard	
Deviation from Mean value of Thiruvananthapuram	28
Figure 4.2: Long-term movement of rainfall trend during Summer in	
Thiruvananthapuram	30
Figure 4.3: Long-term movement of rainfall trend during South West Monsoon	
in Thiruvananthapuram	30
Figure 4.4: Long-term movement of rainfall trend during North East Monsoon	
in Thiruvananthapuram	31
Figure 4.5: Long-term movement of rainfall trend during Winter in	
Thiruvananthapuram	31
Figure 4.6: Long-term movement of Annual rainfall trend in Thiruvananthapuram	32
Figure 4.7: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Kollam	34
Figure 4.8: Long-term movement of rainfall trend during Summer in Kollam	36
Figure 4.9: Long-term movement of rainfall trend during South West Monsoon	
in Kollam	37
Figure 4.10: Long-term movement of rainfall trend during North East Monsoon	
in Kollam	37
Figure 4.11: Long-term movement of rainfall trend during Winter in Kollam	38
Figure 4.12: Long-term movement of Annual rainfall trend in Kollam	38
Figure 4.13: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Pathanamthitta	40
Figure 4.14: Long-term movement of rainfall trend during Summer in Pathanamthitta	42
Figure 4.15: Long-term movement of rainfall trend during South West monsoon	
in Pathanamthitta	43

Figure 4.16:	Long-term movement of rainfall trend during North East monsoon	
	in Pathanamthitta	43
Figure 4.17:	Long-term movement of rainfall trend during North East monsoon	
	in Pathanamthitta	44
Figure 4.18:	Long-term movement of Annual rainfall trend in Pathanamthitta	44
Figure 4.19:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Alappuzha	46
Figure 4.20:	Long-term movement of rainfall trend during Summer in Alappuzha	48
Figure 4.21:	Long-term movement of rainfall trend during South West monsoon	
	in Alappuzha	49
Figure 4.22:	Long-term movement of rainfall trend during North East monsoon	
	in Alappuzha	49
Figure 4.23:	Long-term movement of rainfall trend during Winter in Alappuzha	50
Figure 4.24:	Long-term movement of Annual rainfall trend in Alappuzha	50
Figure 4.25:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Kottayam	52
Figure 4.26:	Long-term movement of rainfall trend during Summer in Kottayam	54
Figure 4.27:	Long-term movement of rainfall trend during South West monsoon	
	in Kottayam	55
Figure 4.28:	Long-term movement of rainfall trend during North East monsoon	
	in Kottayam	55
Figure 4.29:	Long-term movement of rainfall trend during Winter in Kottayam	56
Figure 4.30:	Long-term movement of Annual rainfall trend in Kottayam	56
Figure 4.31:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Idukki	58
Figure 4.32:	Long-term movement of rainfall trend during Summer in Idukki	60
Figure 4.33:	Long-term movement of rainfall trend during South West monsoon	
	in Idukki	61

Figure 4.34: Long-term movement of rainfall trend during North East monsoon	
in Idukki	61
Figure 4.35: Long-term movement of rainfall trend during Winter in Idukki	62
Figure 4.36: Long-term movement of Annual rainfall trend in Idukki	62
Figure 4.37: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Ernakulam	64
Figure 4.38: Long-term movement of rainfall trend during Summer in Ernakulam	66
Figure 4.39: Long-term movement of rainfall trend during South West monsoon	
in Ernakulam	67
Figure 4.40: Long-term movement of rainfall trend during North East monsoon	
in Ernakulam	67
Figure 4.41: Long-term movement of rainfall trend during Winter in Ernakulam	68
Figure 4.42: Long-term movement of Annual rainfall trend in Ernakulam	68
Figure 4.43: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Thrissur	70
Figure 4.44: Long-term movement of rainfall trend during Summer in Thrissur	72
Figure 4.45: Long-term movement of rainfall trend during South West monsoon	
in Thrissur	73
Figure 4.46: Long-term movement of rainfall trend during North East monsoon	
in Thrissur	73
Figure 4.47: Long-term movement of rainfall trend during Winter in Thrissur	74
Figure 4.48: Long-term movement of Annual rainfall trend in Thrissur	74
Figure 4.49: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Palakkad	76
Figure 4.50: Long-term movement of rainfall trend during Summer in Palakkad	78
Figure 4.51: Long-term movement of rainfall trend during South West monsoon	
in Palakkad	79

Figure 4.52: Long-term movement of rainfall trend during North East monsoon	
in Palakkad	79
Figure 4.53: Long-term movement of rainfall trend during Winter in Palakkad	80
Figure 4.54: Long-term movement of Annual rainfall trend in Palakkad	80
Figure 4.55: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Malappuram	82
Figure 4.56: Long-term movement of rainfall trend during Summer in Malappuram	84
Figure 4.57: Long-term movement of rainfall trend during South West monsoon	
in Malappuram	85
Figure 4.58: Long-term movement of rainfall trend during North East monsoon	
in Malappuram	85
Figure 4.59: Long-term movement of rainfall trend during Winter in Malappuram	86
Figure 4.60: Long-term movement of Annual rainfall trend in Malappuram	86
Figure 4.61: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Kozhikode	87
Figure 4.62: Long-term movement of rainfall trend during Summer in Kozhikode	90
Figure 4.63: Long-term movement of rainfall trend during South West in Kozhikode	91
Figure 4.64: Long-term movement of rainfall trend during North East in Kozhikode	91
Figure 4.65: Long-term movement of rainfall trend during Winter in Kozhikode	92
Figure 4.66: Long-term movement of Annual rainfall trend in Kozhikode	92
Figure 4.67: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
from Mean value of Wayanad	94
Figure 4.68: Long-term movement of rainfall trend during Summer in Wayanad	96
Figure 4.69: Long-term movement of rainfall trend during South West monsoon	
in Wayanad	97
Figure 4.70: Long-term movement of rainfall trend during North East monsoon	
in Wayanad	97

Figure 4.71:	Long-term movement of rainfall trend during Winter in Wayanad	98
Figure 4.72:	Long-term movement of Annual rainfall trend in Wayanad	98
Figure 4.73:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Kannur	100
Figure 4.74:	Long-term movement of rainfall trend during Summer in Kannur	102
Figure 4.75:	Long-term movement of rainfall trend during South West monsoon	
	in Kannur	103
Figure 4.76:	Long-term movement of rainfall trend during North East monsoon	
	in Kannur	103
Figure 4.77:	Long-term movement of rainfall trend during Winter in Kannur	104
Figure 4.78:	Long-term movement of Annual rainfall trend in Kannur	104
Figure 4.79:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Kasaragod	105
Figure 4.80:	Long-term movement of rainfall trend during Summer in Kasaragod	108
Figure 4.81:	Long-term movement of rainfall trend during South West monsoon	
	in Kasaragod	109
Figure 4.82:	Long-term movement of rainfall trend during North East monsoon	
	in Kasaragod	109
Figure 4.83:	Long-term movement of rainfall trend during Winter in Kasaragod	110
Figure 4.84:	Long-term movement of Annual rainfall in Kasaragod	110
Figure 4.85:	Spatial pattern of annual rainfall of Kerala in 19 years (2002-2020)	111
Figure 4.86:	Spatial pattern of seasonal rainfall of Kerala in 19 years (2002-2020)	112
Figure 4.87:	Spatial pattern of monthly rainfall of Kerala in 19 years (2002-2020)	113
Figure 4.88:	Graphs representing the Monthly, Seasonal and Annual Standard Deviation	
	from Mean value of Thiruvananthapuram	117
Figure 4.89:	Long-term movement of ETo trend during Summer	
	in Thiruvananthapuram	119

Figure 4.90: Long-term movement of ETo trend during South West monsoon	
in Thiruvananthapuram	119
Figure 4.91: Long-term movement of ETo trend during North East monsoon	
in Thiruvananthapuram	120
Figure 4.92: Long-term movement of ETo trend during Winter in Thiruvananthapuram	121
Figure 4.93: Long-term movement of Annual ETo trend in Thiruvananthapuram	121
Figure 4.94: Graphs representing the Monthly, Seasonal and Annual Standard Deviation	1
from Mean value of Kollam	122
Figure 4.95: Long-term movement of ETo trend during Summer in Kollam	125
Figure 4.96: Long-term movement of ETo trend during South West monsoon in Kollan	n 126
Figure 4.97: Long-term movement of ETo trend during North East monsoon in Kollam	126
Figure 4.98: Long-term movement of ETo trend during Winter in Kollam	127
Figure 4.99: Long-term movement of Annual ETo trend in Kollam	127
Figure 4.100: Graphs representing the Monthly, Seasonal and Annual Standard	
Deviation from Mean value of Alappuzha	129
Figure 4.101: Long-term movement of ETo trend during Summer in Alappuzha	131
Figure 4.102: Long-term movement of ETo trend during South West monsoon	
in Alappuzha	132
Figure 4.103: Long-term movement of ETo trend during North East monsoon	
in Alappuzha	132
Figure 4.104: Long-term movement of ETo trend during Winter in Alappuzha	133
Figure 4.105: Long-term movement of Annual ETo trend in Alappuzha	133
Figure 4.106: Graphs representing the Monthly, Seasonal and Annual	
Standard Deviation from Mean value of Kottayam	135
Figure 4.107: Long-term movement of ETo trend during Summer in Kottayam	137
Figure 4.108: Long-term movement of ETo trend during South west monsoon	
in Kottayam	138

Figure 4.109:	Long-term movement of ETo trend during North East monsoon	
	in Kottayam	138
Figure 4.110:	Long-term movement of ETo trend during Winter in Kottayam	139
Figure 4.111:	Long-term movement of Annual ETo trend in Kottayam	139
Figure 4.112:	Graphs representing the Monthly, Seasonal and Annual	
	Standard Deviation from Mean value of Ernakulam	141
Figure 4.113:	Long-term movement of ETo trend during Summer in Ernakulam	143
Figure 4.114:	Long-term movement of ETo trend during South West monsoon	
	in Ernakulam	144
Figure 4.115:	Long-term movement of ETo trend during North monsoon in Ernakulam	144
Figure 4.116:	Long-term movement of ETo trend during Winter in Ernakulam	145
Figure 4.117:	Long-term movement of Annual ETo trend during Winter in Ernakulam	145
Figure 4.118:	Graphs representing the Monthly, Seasonal and Annual	
	Standard Deviation from Mean value of Thrissur	147
Figure 4.119:	Long-term movement of ETo trend during Summer in Thrissur	149
Figure 4.120:	Long-term movement of ETo trend during South West monsoon	
	in Thrissur	150
Figure 4.121:	Long-term movement of ETo trend during North East monsoon	
	in Thrissur	150
Figure 4.122:	Long-term movement of ETo trend during Winter in Thrissur	151
Figure 4.123:	Long-term movement of Annual ETo trend in Thrissur	151
Figure 4.124:	Graphs representing the Monthly, Seasonal and Annual	
	Standard Deviation from Mean value of Palakkad	153
Figure 4.125:	Long-term movement of ETo trend during summer in Palakkad	155
Figure 4.126:	Long-term movement of ETo trend during South West monsoon	
	in Palakkad	156
Figure 4.127:	Long-term movement of ETo trend during North East monsoon	

in Palakkad	156
Figure 4.128: Long-term movement of ETo trend during Winter in Palakkad	157
Figure 4.129: Long-term movement of Annual ETo trend in Palakkad	157
Figure 4.130: Graphs representing the Monthly, Seasonal and Annual	
Standard Deviation from Mean value of Malappuram	159
Figure 4.131: Long-term movement of ETo trend during summer in Malappuram	160
Figure 4.132: Long-term movement of ETo trend during South west monsoon	
in Malappuram	162
Figure 4.133: Long-term movement of ETo trend during North East monsoon	
in Malappuram	162
Figure 4.134: Long-term movement of ETo trend during Winter in Malappuram	163
Figure 4.135: Long-term movement of Annual ETo trend in Malappuram	163
Figure 4.136: Graphs representing the Monthly, Seasonal and Annual	
Standard Deviation from Mean value of Kozhikode	165
Figure 4.137: Long-term movement of ETo trend during summer in Kozhikode	167
Figure 4.138: Long-term movement of ETo trend during South West monsoon	
in Kozhikode	168
Figure 4.139: Long-term movement of ETo trend during North East monsoon	
in Kozhikode	168
Figure 4.140: Long-term movement of ETo trend during Winter in Kozhikode	169
Figure 4.141: Long-term movement of Annual ETo trend in Kozhikode	169
Figure 4.142: Graphs representing the Monthly, Seasonal and Annual	
Standard Deviation from Mean value of Kannur	171
Figure 4.143: Long-term movement of ETo trend during summer in Kannur	173
Figure 4.144: Long-term movement of ETo trend during South West monsoon	
in Kannur	174
Figure 4.145: Long-term movement of ETo trend during North East monsoon	

in Kannur	174
Figure 4.146: Long-term movement of ETo trend during Winter in Kannur	175
Figure 4.147: Long-term movement of Annual ETo trend in Kannur	175
Figure 4.148: Graphical representation of maximum temperature	
in Thiruvananthapuram	176
Figure 4.149: Graphical representation of maximum temperature in Kollam	178
Figure 4.150: Graphical representation of maximum temperature in Alappuzha	181
Figure 4.151: Graphical representation of maximum temperature in Kottayam	183
Figure 4.152: Graphical representation of maximum temperature in Ernakulam	186
Figure 4.153: Graphical representation of maximum temperature in Thrissur	188
Figure 4.154: Graphical representation of maximum temperature in Palakkad	191
Figure 4.155: Graphical representation of maximum temperature in Malappuram	193
Figure 4.156: Graphical representation of maximum temperature in Kozhikode	196
Figure 4.157: Graphical representation of maximum temperature in Kannur	198
Figure 4.158: Graphical representation of Minimum temperature in	
Thiruvananthapuram	201
Figure 4.159: Graphical representation of Minimum temperature in Kollam	203
Figure 4.160: Graphical representation of Minimum temperature in Alappuzha	206
Figure 4.161: Graphical representation of Minimum temperature in Kottayam	208
Figure 4.162: Graphical representation of Minimum temperature in Ernakulam	211
Figure 4.163: Graphical representation of Minimum temperature in Thrissur	213
Figure 4.164: Graphical representation of Minimum temperature in Palakkad	216
Figure 4.165: Graphical representation of Minimum temperature in Malappuram	218
Figure 4.166: Graphical representation of Minimum temperature in Kozhikode	221
Figure 4.167: Graphical representation of Minimum temperature in Kannur	223
Figure 4.168: Spatial pattern of annual ETo of Kerala in 19 years (2002-2020)	226
Figure 4.169: Spatial pattern of seasonal ETo of Kerala in 19 years (2002-2020)	227
Figure 4.170: Spatial pattern of monthly rainfall of Kerala in 19 years (2002-2020)	228

ABBREVIATIONS

AIC	Akaike's Information Criterion	
ARIMA	Autoregressive Integrated Moving Average	
CV	Coefficient of Variance	
CWRDM	Centre for Water Resources Development and Manageme	nt
ET	Evapotranspiration	
ЕТо	Reference Evapotranspiration	
IDW	Inverse Distance Weighted	
IMD	Indian Meteorological Department	
IPCC	Intergovernmental Panel on Climate Change	
MK test	Mann-Kendall test	
MMK test	Modified Mann-Kendall test	
NEM	Northeast Monsoon	
SD	Standard Deviation	
SWM	Southwest Monsoon	
Tmax	Maximum Temperature	
Tmin	Minimum Temperature	
WM test	Wallis Moore Phase-Frequency test	

A study on pollution status of three open canals connected to Vembanad lake

A project report submitted to the

UNIVERSITY OF CALICUT

In partial fulfillment of the requirements for the award of the degree of Master of Science in

ENVIRONMENTAL SCIENCE

by

MANU SIMON

REGISTER NUMBER : CCAVMES014

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Er. SREELAKSHMI P. B

Environmental Engineer

ERNAKULAM District Office - 1

Kerala State Pollution Control Board

&

DR. MANJU N J

Assistant Professor

Department Of Geology And Environmental Science Christ College (Autonomous), Irinjalakuda

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled "A study on pollution status of three open canals connected to Vembanad lake" is the bonafide work of Mr. Manu simon under the guidance of Dr. Manju N J Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial fulfillment of the requirements of the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Head of the Department

Dept. of Geology & Environmental Science

Christ College (Autonomous), Irinjalakuda

Examiners:

1.

2

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled "A study on pollution status of three open canals connected to Vembanad lake" is the bonafide work of Mr. Manu Simonunder the guidance of Dr. Manju N.J Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial fulfillment of the requirements of the award of the degree of Master of Science in Environmental Science submitted to the University of Calicut during the academic year 2021-2023.

Dr. Manju N J

Assistant Professor

Dept. of Geology & Environmental Science

Christ College (Autonomus), Irinjalakuda

PCB CERTIFICATE

Date: 10/07/2023

CERTIFICATE

This is to certify that Mr. Manu Simon, Reg. No. CCAVMES014 has participated in the project conducted by the Board for the "A Study on Pollution Status of Three Open Canal connected to Vembanad Lake" under my supervision and guidance in partial requirement for the award of Master of Science in Environment Science, Christ College, Irinjalakuda through University of Calicut during the Academic year 2021-2023.

ENVIRONMENTAL ENGINEER

4

DECLARATION

I hereby declare that this project report titled **A study on pollution status of three open canals connected to Vembanad lake** is a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda

Manu Simon

Date:

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, Dr. Subin K Jose for enabling me to carry out this work.

It has been a rare privilege for me to have worked under Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda. I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank State Pollution Control Board, Ernakulam, where my project has been done. I give special obligation and indebtedness to Environmental Engineer Sree lakshmi P.B, Assistant Environmental Engineer Noby of State Pollution Control Board, Ernakulam. I am very thankful to my team members Ganashyam, Williams, Ashin.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of State Pollution Control Board, Ernakulam, who cooperated with my work.

MANU SIMON

CCAVMES014

ABSTRACT

Water pollution is a main source of environmental pollution in our country. This is caused by harmful chemical pollutants and sewage from large- and small-scale industries, restaurants, apartments as well. In this project, areas are selected, and the apartments, restaurants, and industries that lie near the canals that are open to the lake are surveyed in order to evaluate the effect of pollution on the Vembanad Lake surrounding them. This is a project based on the Court order NGT (THE NATIONAL GREEN TRIBUNAL) ORDER 147/2022 which was undertaken by the Pollution Control Board of Ernakulam district. This is to formulate an action plan to restore water quality in Vembanad Lake areas. The selected areas are near goshree bridge, near sylcon hyper market and mullassery canal. The samples from each canal near the study areas were collected, and estimations were done. The results were loaded into a tabulated format by directly visiting the canals, and the location is marked on the map. It's challenging to develop incentives for behavior change, though. As a result, there needs to be increased awareness among the operators to limit the effluent output from restaurants, industries, and apartments, as well as to employ water-efficient and/or tools to techniques maximize water consumption. Programs for training can be assessed to determine how effective they are and to help the protocol be continually improved.

<u>CONTENTS</u>

CHAPTER 1; INTRODUCTION13
OBJECTIVES15
CHAPTER2; REVIEW OF LITERATURE20
CHAPTER 3; METHODOLOGY26
MATERIALS AND METHODS27
CHAPTER 4; RESULTS
RESULTS 202137
RESULTS 202340
DISCUSSION46
CHAPTER 5; CONCLUSION52
REFERENCE54

TABLES

Table 1; Water quality standards	3
Table 2; Result 2021 (Sylcon)37	
Table 3; Result 2021 (Goshree)38	
Table 4; Result 2021 (Mullassery)39)
Table 5; Result 2023 (Mullassery)40	
Table 6; Result 2023 (Sylcon)42	
Table 7; Result 2023 (Goshree)44	
Table 8; Endangered species of fishes)
Table 9; Endangered species of birds51	L

<u>FIGURES</u>

Figure 1; Vembanad lake location in Kerala map16
Figure 2; Study area27
Figure 3; Sampling locations28
Figure 4; Sampling (Mullassery canal)29
Figure 5; Sampling (Sylcon Hypermarket)
Figure 6; Sampling (Goshree bridge)31
Figure 7; Graphical analysis Ph46
Figure 8; Graphical analysis Conductivity46
Figure 9; Graphical analysis TDS47
Figure 10; Graphical analysis DO47
Figure 11; Graphical analysis BOD48
Figure 12: Graphical analysis COD

THERMAL STABILITY STUDY UNDER CONTINUOUS TEAK CULTIVATION, OPEN LAND AND NATURAL FOREST

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

MUHAMMAD SUHAIL V.A

Reg. No: CCAVMES015

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr. S SANDEEP

Principal Scientist

Department of Soil Science

Kerala Forest Research Institute Peechi, Thrissur, Kerala

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"THERMAL STABILITY STUDY UNDER CONTINUOUS TEAK CULTIVATION, OPEN LAND AND NATURAL FOREST"** is an authentic record of the work carried out by **Mr. Muhammad Suhail V.A** under guidance of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Asst.Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1. 2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"THERMAL STABILITY STUDY UNDER CONTINUOUS TEAK CULTIVATION, OPEN LAND AND NATURAL FOREST"** is an authentic record of the work carried out by **Mr. Muhammed Suhail V.A** under co-guidance of **Dr. Subin K Jose**, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Assistant Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

KSCSTE-Kerala Forest Research Institute (An Institution under Kerala State Council for Science, Technology and Environment) Peechi - 680 653, Thrissur, Kerala, India

CERTIFICATE

This is to certify that the thesis entitled "THERMAL STABILITY STUDY UNDER CONTINUOUS TEAK CULTIVATION, OPEN LAND AND NATURAL FOREST" is a bonafide research work carried out by Mr. Muhammad Suhail V.A, Reg. No: CCAVMES015, in partial requirement for the award of Master of Science in Environmental Science, Christ college (Autonomous), Irinjalakuda to the University of Calicut during the period April-June in the Dept. of Soil Science, KSCSTE-Kerala Forest Research Institute under my guidance and supervision.

Place:Peechi

Date:24/7/2023

Dr S

(Supervising guide)

Dr. S. Sandeep Principal Scientist & Head Soil Science Department KSCSTE - Kerala Forest Research Institute Peechi – 680 653, Thrissur, Kerala

DECLARATION

I hereby declare that the project work entitled "**Thermal stability study under continuous teak cultivation, open land and natural forest**" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to June 2023 under the guidance and supervision of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Muhammad Suhail V.A

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr. S Sandeep, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute** for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I am extremely thankful to **Panchami Jaya**, Research Scholar, Kerala Forest Research Institute for her guidance and suggestions throughout my work.

I express my gratitude to my project guide **Dr. Subin K Jose**, Asst. Professor & Head, Dept. of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable guidance and encouragement throughout the course of this work.

I would also like to thank **Binsiya T.K**, Research Scholar, Kerala Forest Research Institute for helping me during my work.

I express my sincere thanks to all staffs of soil science department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

My acknowledgment would not be complete without acknowledging my parents. Any attempt at any level can't be satisfactorily completed without the support, guidance, and constant inspiration of my parents.

Muhammad Suhail V.A

ABSTRACT

In this study we mainly focus on assessing total organic carbon (TOC) of various types of soil which has been collected from different plantation and forest systems of Kerala. Soil sample from surface (0-15) were collected and later subjected for air-drying, ground and sieved for further analysis. Study mainly focused on thermal stability of TOC under continuous teak cultivation soil. Experiment was setup for a total of 75 days in which soil samples were incubated at four temperatures (25°C,30°C ,35°C,40°C) and were examined regularly in the span of prefixed time intervals. 17 soil samples from different regions of Kerala and was used for the estimation of total organic carbon and analysis of thermal stability experiment. Total organic carbon (TOC) was estimated using Walkley and Black method.

Thermal stability studies were mainly by using Arrhenius equation, activation energy and rate constants. Q_{10} values were also estimated in this study. Study shows that if the activation energy is more then the temperature stability is also more and vice versa.

TABLE OF CONTENTS

1.	INTRODUCTION1
2.	REVIEW OF LITERATURE
3.	MATERIALS AND METHODS
	3.1SITE SELECTION
4.	RESULTS11
	 4.1 THERMAL STABILITY OF CARBON IN SOIL SAMPLES OF KERALA11 4.2 Q₁₀ VALUES OF CARBON DECOMPOSITION IN SOIL SAMPLES12
5.	DISCUSSION15
6.	CONCLUSION16
7.	REFERENCES17

LIST OF TABLES

1.	Table 1- ACTIVATION ENERGY	.12
2.	Table 2- Q ₁₀ VALUES	.13

WATER QUALITY INDEX OF KONOTHUPUZHA RIVER

A project report submitted to the

THE UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

by

WILLIAMS RAPHAEL

REGISTER NUMBER : CCAVMES016

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Er. SREELAKSHMI P. B

ENVIRONMENTAL ENGINEER

ERNAKULAM DISTRICT OFFICE-1

KERALA STATE POLLUTION CONTROL BOARD

Kerala State Pollution Control Board കേരള സംസ്ഥാന മലിനികരണ നിയന്ത്രണ ബോർഡ് Committed to protection of environment

&

Dr.MANJU N. J

ASSISTANT PROFESSOR

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA,THRISSUR -680125

CERTIFICATE

This is to certify that the project report entitled **Water Quality Index of Konothupuzha River** is the bonafide work of **Mr.Williams Raphael** under the guidance of **Dr. Manju N J** Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021- 2023.

Dr.Subin K Jose

Head of the Department

Department of Geology and Environmental Science

Christ College (Autonomous) Irinjalakuda

Examiners:

1.

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA,THRISSUR -680125

CERTIFICATE

This is to certify that the project report entitled **Water Quality Index of Konothupuzha River** is the bonafide work of **Mr.Williams Raphael** under the guidance of **Dr. Manju N J** Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirements of the degree of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021- 2023.

Dr.Manju N J

Assistant Professor

Department of Geology and Environmental science

Christ College (Autonomous) Irinjalakuda

KSPCB CERTIFICATE

Phone: 0484-2207783, 84, 85, 86 Email: pcbdol@gmail.com Website: www.keralapcb.nic.in

KERALA STATE POLLUTION CONTROL BOARD DISTRICT OFFICE - 1, ERNAKULAM GANDHINAGAR, KOCHI - 682 020 കേരള സംസ്ഥാന മലിനീകരണ നിയന്ത്രണ ബോർഡ് ജില്ലാ ഓഫീസ് - 1, എറണാകൂളം ഗാന്ധിനഗർ, കൊച്ചി - 682 020

Date: 10/07/2023

CERTIFICATE

This is to certify that Mr. Williams Raphael, Reg. No. CCAVMES016 has participated in the project conducted by the Board for the "Water Quality Index of Konothupuzha River, Ernakulam" under my supervision and guidance in partial requirement for the award of Master of Science in Environment Science, Christ College, Irinjalakuda through University of Calicut during the Academic year 2021-2023.

ENVIRONMENTAL ENGINEER

all

DECLARATION

I hereby declare that this project report titled **Water Quality Index of Konothupuzha River** is a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda

Williams Raphael

Date :

CCAVMES016

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, Dr. Linto Alappat and to Dr.Subin K Jose for enabling me to carry out this work.

It has been a rare privilege for me to have worked under Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda.I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank State Pollution Control Board, Ernakulam, where my project has been done. I give special obligation and indebtedness to Environmental Engineer Sreelakshmi P.B, Assistant Environmental Engineer Fariz K.R of State Pollution Control Board, Ernakulam.I am very thankful to my team members Ashin Saji,Ganashyam T.S,and Manu Simon.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of State Pollution Control Board, Ernakulam, who cooperated with my work.

ABSTRACT

A Water Quality Index (WQI) is a useful statistical tool for simplifying, reporting and interpreting complex information obtained for any water body. A simple number given by any WQI model explains the level of water contamination .A water quality index carried out for Konothupuzha river on very important parameters can provide a simple indicator of water quality.The present study deals with the monitoring of variation of water quality index of Konothupuzha river. The index is used to improve the comprehension of general water quality issues, communicates water quality status and illustrates the need for and the effectiveness of protective practices. It is found that in all cases the change in WQI value follow a similar trend throughout the study period. The WQI values (33.15 - 68.51) calculated for the different samples indicate that the water is not safe for human consumption. We should implement preventive measures to reduce the threat of domestic and industrial discharges as well as agricultural activities discharges to the river inorder to restore the quality of water.

LIST OF CONTENTS

CHAPTER 1 : INTRODUCTION	13
1.1: WATER QUALITY INDEX1.2: KONOTHUPUZHA RIVER	15 16
CHAPTER 2 : REVIEW OF LITERATURE	19
CHAPTER 3 :MATERIALS AND METHODS	23
3.1 : STUDY AREA	23
3.2 : METHODOLOGY	25
CHAPTER 4 : RESULT AND DISCUSSION	34
CHAPTER 5 : CONCLUSION	
REFERENCE	59

LIST OF TABLES

TABLE 1 : DRINKING WATER STANDARDS(BIS 10500-2012)	26
TABLE 2 :WEIGHING FACTOR OF PARAMETERS IN NSF-WQI	27
TABLE 3 : WATER QUALITY INDEX AND STATUS OF WQI	32
TABLE 4-10 : CALCULATION AND RESULT OF WQI IN JUNE 2020	34
TABLE 11-17 : CALCULATION AND RESULT OF WQI IN JUNE 2021.	37
TABLE 18-24 :CALCULATION AND RESULT OF WQI IN APRIL 2022.	40
TABLE 25-31 :CALCULATION AND RESULT OF WQI IN APRIL 2023.	43
TABLE 32 : VARIATION OF WATER QUALITY INDEX	55

LIST OF FIGURES

FIG 1 : ERNAKULAM DISTRICT RIVER MAP	14
FIG 2 : GEOGRAPHIC LOCATION OF KONOTHUPUZHA RIVER	16
FIG 3 : KONOTHUPUZHA RIVER	17
FIG 4 : GEOGRAPHIC LOCATION OF SAMPLING SITES	23
FIG 5 - 11 : IMAGES OF 7 SAMPLING SITES	23
FIG 12 :WATER SAMPLE COLLECTION	25
FIG 13 - 21 : Q VALUES OF PARAMETERS USED IN NSF-WQI	27
FIG 22 – 31 : GRAPHS SHOWING THE VARIATION OF PARAMETE	RS46
FIG 31 : VARIATION OF WATER QUALITY INDEX	56

ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF - CHIMMONY WILD LIFE SANCTUARY

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

AMRUTHA M U

Reg. No: CCAVMES001

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr SUBIN K JOSE

ASSISTANT PROFESSOR & HEAD

DEPARTMENT of GEOLOGY and ENVIRONMENTAL SCIENCE

Christ College (Autonomous) Irinjalakuda

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF CHIMMONY WILD LIFE SANCTUARY" is an authentic record of the work carried out by Ms Amrutha M U under guidance of Dr Deepu Sivadas Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Subin K Jose

Asst.Professor& Head

Dept. of Geology & Environmental Science

Christ College (Autonomous), Irinjalakuda

Examiners:

1.	 	 				 						

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF CHIMMONY WILD LIFE SANCTUARY" is an authentic record of the work carried out by Ms. Amrutha M U under co-guidance of Dr Subin K Jose, Assistant Professor & Head, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Subin K Jose

Assistant Professor & Head

Dept. of Geology & Environmental Science

Christ College (Autonomous), Irinjalakuda

DECLARATION

I hereby declare that the project work entitled "Assessment of Effectiveness of Protected Area Management – Chimmony Wildlife Sanctuary" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to July 2023 under the guidance and supervision of **Dr Deepu Sivadas** Scientist B, Forest Ecology Department, Kerala Forest Research Institute(KFRI),Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Amrutha M U

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr Deepu Sivadas,** Scientist B, Kerala Forest Research Institute for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I express my gratitude to my project guide **Dr Subin K Jose**, Head of the Department of Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable advice and support throughout this project work.

I express my sincere thanks to all staffs of Forest Ecology department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

Finally, I would like to thank my family and friends for their constant encouragement, understanding, and patience throughout this research journey.

Amrutha M U

ABSTRACT

Protected areas play a crucial role in conserving biodiversity and maintaining ecological balance. Among these areas, Chimmony Wildlife Sanctuary in Kerala, India, stands as an important sanctuary nestled in the Western Ghats, a region known for its ecological significance. This study aims to assess the management effectiveness of Chimmony Wildlife Sanctuary in achieving its conservation goals. By evaluating the sanctuary's management practices and their impact on biodiversity, habitat preservation, and sustainable resource use, the study seeks to provide valuable insights into the conservation efforts in this protected area. The research examines the challenges faced by the management, including human-wildlife conflicts, encroachments, and tourism pressures, and evaluates the outcomes of relocation efforts for local communities. By understanding the successes and shortcomings of management strategies, this study contributes to enhancing the conservation and sustainable development objectives of Chimmony Wildlife Sanctuary and offers valuable lessons for protected area management worldwide.

LIST OF CONTENTS

1.	INTE	RODUC	CTION	1
2.	LITE	ERATU	RE REVIEW	6
3.	MAT	FERIAI	LS AND METHODS	18
	3.1	STUD	Y AREA	18
	3.2	METH	IEDOLOGY	22
		3.2.1	STUDY DESIGN	23
		3.2.2	DATA COLLECTION INSTRUMENTS	24
		3.2.3	SAMPLING	24
		3.2.4	ETHICAL CONSIDERATIONS	25
		3.2.5	DATA COLLECTION PROCEDURE	25
		3.2.6	DATA ANALYSIS	26
		3.2.7	QUESTIONNARE	27
4.	RES	ULT		35
	4.1	PROB	LEMS IN ACHIEVING OBJECTIVES	36
	4.2	INFRA	ASTRUCTURE FACILITIES	37
		4.2.1	ANTI POACHING CAMPSHEDS	37
		4.2.2 (CHECK POSTS AND CHECK GATES	38
		4.2.3	ARMS AND AMMUNITIONS	38
		4.2.4 I	ROADS AND TREK PATHS	38
	4.3	FIRE	MANAGEMENT	39
	4.4	WATI	ERSHED AND HABITAT MANAGEMENT	40
		4.4.1 N	MAPPING AND ASSESMENT OF WATER SOURCES	40

	4.4.2	MAINTENANCE AND CONSTRUCTION OF	
		WATERHOLES	41
	4.4.3	SEASONALITY STUDY AND IMPLEMENTATION OF	
		WATERHOLES AND CHECK DAMS	41
	4.4.4	DESILTING AND SOIL CONSERVATION MEASURES	41
	4.4.5	STREAM BANK STABILIZATION AND EROSION	
		CONTROL	42
	4.4.6	ASSESMENT OF SOCIO-ECONOMIC BENEFITS	42
4.5	SPEC	IFIC ACTIVITIES FOR ECO TOURISM MANAGEMENT	43
4.6	SWO	ΓANALYSIS	44
	4.6.1	STRENGTHS	44
	4.6.2	WEAKNESSES	44
	4.6.3	OPPURTUNITIES	45
	4.6.4	THREATS	45
DISC	CUSSIC	ON AND CONCLUSION	46
REF	ERENC	CES	48

5.

6.

LIST OF FIGURES

FIG 1:	PEECHI WILDLIFE DIVISION MAP SHOWING CHIMMONY	
	WILDLIFE SANCTUARY	
	(SOURCE: KERALA FOREST DEPARTMENT)	20
FIG 2:	CHIMMONY FOREST STATION	20
FIG3:	KAVALA FOREST STATION	21
FIG 4:	SEMI EVERGREEN FOREST IN CHIMMONY WILDLIFE	
	SANCTUARY	26

EFFECT OF MILD REAGENTS ON RAW MICA MODIFICATION

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

AMRUTHA SURESH

Reg. No: CCAVMES002

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr. S SANDEEP

Principal Scientist

Department of Soil Science

Kerala Forest Research Institute Peechi, Thrissur, Kerala

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"EFFECT OF MILD REAGENTS ON RAW MICA MODIFICATION"** is an authentic record of the work carried out by **Ms. Amrutha Suresh** under guidance of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Subin K Jose

Asst.Professor & Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1	• • • •
---	---------

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "EFFECT OF MILD REAGENTS ON RAW MICA MODIFICATION" is an authentic record of the work carried out by Ms. Amrutha Suresh under co-guidance of Dr. Rekha V B, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

KSCSTE-Kerala Forest Research Institute

(An Institution under Kerala State Council for Science, Technology and Environment) Peechi - 680 653, Thrissur, Kerala, India

CERTIFICATE

This is to certify that the thesis entitled "EFFECT OF MILD REAGENTS ON RAW MICA MODIFICATION" is a bonafide research work carried out by Ms. Amrutha Suresh, Reg. No: CCAVMES002, in partial requirement for the award of Master of Science in Environmental Science, Christ college (Autonomous), Irinjalakuda to the University of Calicut during the period April-June in the Dept. of Soil Science, KSCSTE-Kerala Forest Research Institute under my guidance and supervision.

Place:Pcechi

Date:24/7/2023

t,

(Supervising guide)

Dr. S. Sandeep Principal Scientist & Head Soil Science Department KSCSTE - Kerala Forest Research Institute Peechi – 680 653, Thrissur, Kerala

DECLARATION

I hereby declare that the project work entitled "Effect of mild reagents on raw mica modification" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to June 2023 under the guidance and supervision of **Dr. S Sandeep**, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute (KFRI), Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Amrutha Suresh

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr. S Sandeep, Principal Scientist, Department of Soil Science, Kerala Forest Research Institute** for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I am extremely thankful to **Navya Murali**, Research Scholar, Kerala Forest Research Institute for her guidance and suggestions throughout my work.

I express my gratitude to my project guide **Dr. Rekha V.B**, Asst. Professor, Dept. of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable guidance and encouragement throughout the course of this work. I place on record my profound gratitude to **Dr. Subin K Jose**, Head of the Department of Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable advice and support throughout this project work.

I would also like to thank **Soumya S** of Centre for Analytical Instrumentation Kerala (CAI – K), KFRI for helping me during the analysis.

I express my sincere thanks to all staffs of soil science department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

My acknowledgment would not be complete without acknowledging my parents. Any attempt at any level can't be satisfactorily completed without the support, guidance, and constant inspiration of my parents.

Amrutha Suresh

ABSTRACT

Clay minerals have a special set of features, including high cation exchange capacities, catalytic properties, plastic behaviour when moist, are characterised by their small particle size, which is typically less than 0.002 micrometres, and their high surface area to volume ratio. Inorganic salt activation plays an important role in modifying the microstructure and improving the surface properties of clay minerals. The surface properties of mica were investigated using water and sodium citrate, two mild leaching agents for different time intervals.

Chemical activation could gradually expand the interlayer distance of mica due to the leaching of cations and weakened interlayer forces. Characterization is done using XRD (X ray diffraction), AAS (Atomic absorption spectroscopy) and Flame photometry techniques. X ray spectra shows an increase of d spacings in water and salt treated mica which indicates recrystallization and and emergence of new mineral components with a higher interlayer space. AAS and Flame photometry determines an increase in concentration of elements in leached solution indicates mineral dissolution. Maximum leaching of concentration of elements results in altering the layers, increasing surface area and porosity.

TABLE OF CONTENTS

1.	INTROD	UCTION	1
	1.1 CLAY	Y MINERALS	1
	1.2 TYPE	ES OF CLAY MINERALS	1
	1.3 STRU	JCTURE OF CLAY MINERALS	1
	1.4 PROF	PERTIES OF CLAY MINERALS	2
		SPECIFIC AREA	
		CATION EXCHANGE CAPACITY	
		SWELLING AND SHRINKAGE	
		ADSORPTION	
		LOW PERMEABILITY	
		Y MINERALS AND ENVIRONMENT REMEDIATION PROCESS	
		ECTIVE OF THE STUDY	
2	REVIEW	OF LITERATURE	6
2.			0
3	MATERI	ALS AND METHODS	8
5.			0
	3.1 MAT	ERIALS	8
		PARATIONS	
		RACTERIZATION TECHNIQUE USED	
	3.3.1	X -RAY DIFFRACTION SPECTROSCOPY	
	3.3.1		-
		FLAME PHOTOMETER	
	3.3.3	FLAME PHOTOMETER	12
1	DECIIIT	AND DISCUSSION	14
4.		AY DIFFRACTION SPECTROSCOPY	
	4.1 A -KA 4.1.1	SET-1	
	4.1.1	SET-2	
		SET-2 SET-3	
	4.1.3 4.1.4	SET-5	
		SE1-4 ERAL DISSOLUTION EXPERIMENTS	
	4.2.1	SET-1	
	4.2.2	~	-
		SET-3.	
	4.2.4	SET-4	21
5	CONCLU	JSION	าา
э.	CONCLU	791011	∠∠
6	REFERE	NCES	23
0.			

LIST OF FIGURES

FIG 1: TETRAHEDRAL AND OCTAHEDRAL UNIT OF CLAY MINERALS2
FIG 2: RIGAKU MINIFLEX MODEL XRD
FIG 3: SCHEMATIC REPRESENTATION OF XRD10
FIG 4: ATOMIC ABSORPTION SPECTROMETER11
FIG 5: SCHEMATIC REPRESENTATION OF ATOMIC ABSORPTION SPECTROSCOPY
FIG 6: ELICO CL 378 MODEL FLAME PHOTOMETER12
FIG 7: SCHEMATIC REPRESENTATION OF FLAME PHOTOMETER
FIG 8: XRD PATTERN OF MICA TREATED WITH WATER FOR 24 HR,48 HR,72 HR
FIG 9: XRD PATTERN OF MICA AFTER INORGANIC SALT (100ppm) ACTIVATION FOR 24 HR,48 HR.72 HR
FIG 10: XRD PATTERN OF MICA AFTER INORGANIC SALT (200ppm) ACTIVATION FOR 24 HR,48 HR.72 HR
FIG 11: XRD PATTERN OF MICA AFTER INORGANIC SALT (300ppm) ACTIVATION FOR 24 HR,48 HR.72 HR
FIG 12: CUMULATIVE IRON RELEASE FROM RAW MICA AFTER WATER AND SALT TREATMENTS
FIG 13: CUMULATIVE MAGNESIUM RELEASE FROM RAW MICA AFTER WATER AND SALT TREATMENTS
FIG 14: CUMULATIVE POTASSIUM RELEASE FROM RAW MICA AFTER WATER AND SALT TREATMENTS
FIG 15: CUMULATIVE SODIUM RELEASE FROM RAW MICA AFTER WATER AND SALT TREATMENTS

Air Quality Index of Kochi Based on Brahmapuram Fire Incident

A project report submitted to the

UNIVERSITY OF CALICUT

In partial fulfillment of the requirements for the award of the degree of Master of Science in

ENVIRONMENTAL SCIENCE

by

ASHIN SAJI

REGISTER NUMBER : CCAVMES003

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Er. SREELAKSHMI P. B

Environmental Engineer

ERNAKULAM District Office - 1

Kerala State Pollution Control Board

&

DR. MANJU N J

Assistant Professor

Department Of Geology And Environmental Science, Christ College Autonomous), Irinjalakuda

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled **Air Quality Index of Kochi Based on Brahmapuram Fire Incident** is the bonafide work of **Mr Ashin Saji** under the guidance of **Dr. Manju N J Assistant Professor**, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of degree of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

> Dr. Subin K Jose Head of the Department Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

-	•	
Exam	າເກ	arc
LAUII		-13.

1.

2

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled **Air Quality Index of Kochi Based on Brahmapuram Fire Incident** is the bonafide work of **Mr Ashin Saji** under the guidance of **Dr. Manju NJ Assistant Professor**, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of degree of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr. Manju N J

Assistant Professor

Dept. of Geology & Environmental Science

Christ College (Autonomus), Irinjalakuda

Date: 10/07/2023

CERTIFICATE

This is to certify that Mr. Ashin Saji, Reg. No. CCAVMES003 has participated in the project conducted by the Board for the "Air Quality Index of Kochi based on Brahmapuram Fire Incident" under my supervision and guidance in partial requirement for the award of Master of Science in Environment Science, Christ College, Irinjalakuda through University of Calicut during the Academic year 2021-2023.

ENVIRONMENTAL ENGINEER

DECLARATION

I hereby declare that this project report titled is **Air Quality Index of Kochi Based on Brahmapuram Fire Incident** a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda

Date :

ASHIN SAJI CCAVMES003

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, and to Dr. Subin K Jose for enabling me to carry out this work.

It has been a rare privilege for me to have worked under Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda. I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank State Pollution Control Board, Ernakulam, where my project has been done. I give special obligation and indebtedness to Environmental Engineer Sreelakshmi P. B., of State Pollution Control Board, Ernakulam. I am very thankful to my team members Ganashyam T.S, Manu Simon, Williams Raphael.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of State Pollution Control Board, Ernakulam, who cooperated with my work.

ABSTRACT

Monitoring the air quality involves determining the types and amounts of pollutants present in the atmosphere in accordance with established air quality guidelines. By keeping track of air contaminants, air quality monitoring enables us to improve air quality. Air pollution has an appalling effect on human health and our planet as a whole. This study quantifies air pollution using a parameter – Air Quality Index based on Bramhapuram incident. Eight different air pollutants parameters are also measured using the data from monitoring stations Eloor and Vyttilla. The data from February to June is used to determine the effect of the Bramhapuram incident in Kochi.

Air Quality Index of Kochi Based on Brahmapuram Fire Incident

CONTENTS

CHAPTER 1 : Introduction	12
 1.1 National Air Quality Index 1.2 Control Measures and Programmes 1.3 Continuous Ambient Air Quality Monitoring System (CAAQMS) 1.4 Objectives 	13 14 16 16
CHAPTER 2 : Review of Literature	17
CHAPTER 3 : Materials and Methods	20
3.1 Study Area	20
3.2 Methodology	21
3.3 Insruments	24
3.3.1 Respirable Dust Sampler	24
3.3.2 Fine Particulate Sampler	25
CHAPTER 4 : Result and Discussion	30
CHAPTER 5 : Conclusion	46
Reference	47

LIST OF TABLES

TABLE 1 : Location of Monitoring Stations	22
TABLE 2 : AQI Category , Pollutants and Health Break points	26
TABLE 3 : Health statements for different AQI Categories	27
TABLE 4 : National Ambient Air Quality Standards (NAAQS)	. 28
TABLE 5: AQI of Monitoring station Eloor	30
TABLE 6 : AQI of monitoring Stations Vyttilla	30
Table 7 – 8 : Monthly Average of air pollutants in Eloor monitoring Station	33
TABLE 9 : Meteorological Parameters in Eloor	35
TABLE 10 – 11 : Monthly Average of air pollutants in Vyttilla monitoring Statio	on 38
TABLE 12 : Meteorological Parameters in Vyttilla	40
TABLE 13 : AQI of Kochi city	43

LIST OF FIGURES

Fig 1 : Map of Kochi city	.21
Fig 2 : Map of Bramhapuram waste treatment plant , Vyttilla and Eloor	
Stations	21
Fig 3 : Respirable Dust Sampler	.24
Fig 4 : Diagram of Respirable DustSampler	24
Fig 5 : Fine Particulate Sampler	25
Fig 6 : Diagram of Fine Particulate Sampler	25
Fig 7 : AQI of Eloor	31
Fig 8 : AQI of Vyttilla	32
Fig 9 - 10 : Meteorological Parameters in Eloor	35
Fig 11– 18 : Concentration of air pollutants in Eloor	36
Fig 19 – 20 : Meteorological Parameters in Vyttilla	40
Fig 21 – 28 :Concentration of air pollutants in Vyttilla	41
Fig 29 : AQI of Kochi City	43

SHORELINE CHANGE ANALYSIS ALONG THE COASTAL AREA OF THRISSUR DISTRICT, KERALA

UNIVERSITY OF CALICUT

In partial fulfillment of the requirements for the degree of Master of Science in

ENVIRONMENTAL SCIENCE

by

ASWATHY K V

REGISTER NUMBER: CCAVMES004

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the guidance of

Dr.Subin k jose

Assistant professor

Head of the department

Department of Geology and Environmental Science

Christ College (Autonomous), Irinjalakuda

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled SHORELINE CHANGE ANALYSIS ALONG THE COASTAL AREA OF THRISSUR DISTRICT, KERALA is the bonafide work of Ms. ASWATHY K V under the guidance of Dr. Subin k jose Assistant Professor, Head of the Department of Geology and Environmental Science and Haritha D S, Research scholar Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirements of the degree of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023

> Dr. Subin k jose Head of the Department Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

2.

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

CERTIFICATE

This is to certify that the project report entitled SHORELINE CHANGE ANALYSIS ALONG THE COASTAL AREA OF THRISSUR DISTRICT, KERALA is the bonafide work of Ms. ASWATHY K V under the guidance of Dr. Subin k jose Assistant Professor, Head of the Department of Geology and Environmental Science and Haritha D S, Research scholar Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirements of the degree of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023

Dr. Subin k jose Assistant Professor Head of the department Dept. of Geology & Environmental Science Christ College (Autonomus), Irinjalakuda

DECLARATION

I hereby declare that this project report titled SHORELINE CHANGE ANALYSIS ALONG THE COASTAL AREA OF THRISSUR DISTRICT, KERALA is a bonafide work done by me under the supervision of Dr.Subin k jose, Assistant Professor, Head of the Department, Department of Geology and Environmental Science, and Haritha D S, Research scholar Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda and this work has not previously formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Irinjalakuda

Date

ASWATHY K V CCAVMES004

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study.

I express my deep sense of gratitude to **Rev. Fr. Dr. Jolly Andrews** CMI, the Principal of Christ College Irinjalakuda, **Dr. Linto Alappat** and to **Dr.Subin K Jose** for enabling me to carry out this work.

It has been a rare privilege for me to have worked under **Dr.Subin k jose**, Assistant Professor, Head of the Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda. I express my most sincere gratitude for his timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank **Haritha D S**, Research scholar Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda For her support and guidance.

I sincerely acknowledge **Rengith R Pillai**, Research scholar, Department of Geography, Sree Sankaracharya University of Sanskrit, Kalady for the help and suggestions.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work.

CONTENT

1	Introduction1-2
2	Objectives
3	Review Of Literature
Eri	cor! Bookmark not defined.
4	Study area16
5	Materials and
Me	thodesError! Bookmark not
def	ined.
6	Result & Discussion
7	
	Conclusion2E
rro	r! Bookmark not defined.
8	References

LIST OF FIGURES

- Figure 1 Study area
- Figure 2 Landsat image of Thrissur district
- Figure 3 EPR map 1973- 2022 of Thrissur district, Kerala

UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF EDAVILANGU PANCHAYATH IN THRISSUR

A Dissertation Submitted to

THE UNIVERSITY OF CALICUT, THENHIPALAM

In partial fulfilment of the requirement for the award of the Degree of

MASTER OF SCIENCE IN ENVIRONMENTAL SCIENCE

Submitted by

CHANDNI SHASHI MENON

Reg. no. CCAVMES005

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

Under the Guidance of

Dr SUBIN K JOSE

ASSISSTANT PROFESSOR

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA,

THRISSUR - 680125

CERTIFICATE

This is to certify that the dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF EDAVILANGU PANCHAYATH IN THRISSUR" is a record of original work done by CHANDNI SHASHI MENON (Reg. No. CCAVMES005), under co-guidance of Dr Deepu Sivadas Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi in partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science from Calicut University, Malappuram for the academic year 2021-23. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

Dr. Subin K Jose

Head, Dept. of Geology and Environmental Science

Examiners: 1..... 2.....

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA, THRISSUR - 680125

CERTIFICATE

This is to certify that the dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF EDAVILANGU PANCHAYATH IN THRISSUR" is a record of original work done by CHANDNI SHASHI MENON (Reg. No. CCAVMES005), under my supervision in partial fulfilment of the requirement for the award of the degree of Master of Science in Environmental Science from Calicut University, Malappuram for the academic year 2021-2023. The research work has not previously formed the basis for the award of any degree or any work on the part of the candidate.

> Dr. Subin K Jose Project Guide Dept. of Geology and Environmental Science Christ College (autonomous), Irinjalakuda

DECLARATION

I hereby declare that this dissertation titled "UNDERSTANDING THE BIOLOGICAL DIVERSITY PROFILE OF KERALA; A RECONNAISSANCE SURVEY OF EDAVILANGU PANCHAYATH IN THRISSUR" is a bonafide work done by me under the supervision of Dr. Manju N J, Assistant Professor, Department of Geology and Environmental Science, Christ College, Irinjalakuda and this work has not previously

formed the basis for the award of any other academic qualification, fellowship or other similar title of any other University or Board.

Place: Irinjalakuda

CHANDNI SHASHI MENON

Date:

ACKNOWLEDGEMENT

This is to express my deepest sense of gratitude to all those who have extended their timely support and helping hand in completing this study. I'm extremely grateful to God almighty, without whose blessing I could not have successfully completed this study.

I express my deep sense of gratitude to Rev. Fr. Dr. Jolly Andrews CMI, the Principal of Christ College Irinjalakuda, for enabling me to carry out this work and to Dr. Subin K Jose, Head of the Department, for his valuable suggestions for this work.

It has been a rare privilege for me to have worked under Dr.Subin K Jose, Assistant Professor, Department of Geology and Environmental Science, Christ College, Irinjalakuda. I express my most sincere gratitude for her timely advice, guidance and encouragement which enabled me to work with zest and zeal.

I sincerely thank Kerala Forest Research Institute, Peechi, Thrissur, where my project has been done. I give special obligation and indebtedness to Dr.Deepu Sivadas, Scientist B, Forest Ecology & Biodiversity Conservation Division, KFRI, Peechi.

I'm thankful to all our teachers and friends for their encouragement at various stages of the work. And my heart flows with most gratitude towards my loving parents, all the members of KFRI, Thrissur, who cooperated with my work.

CHANDNI SHASHI MENON CCAVMES005

LIST OF CONTENTS

CHAPTER 1:	INTRODUCTION	1
CHAPTER 2:	REVIEW OF LITERATURE	15
CHAPTER 3:	MATERIALS AND METHODS	18
CHAPTER 4:	RESULTS & DISCUSSION	21
CHAPTER 5:	CONCLUSION	50
REFERENCES	5	51

Sl. No	Table No	Contents	Page No
1	4.1	Wildlife Creature	21
2	4.2	Wild Timber Trees	23
3	4.3	Other Wild Plants	25
4	4.4	Wild Medicinal Plants	25
5	4.5	Wild Ornamental Plants	28
6	4.6	Wild relatives of crops	28
7	4.7	Wild fish diversity	29
8	4.8	Wild aquatic plants	29
9	4.9	Wild aquatic animals	30
10	4.10	Agricultural crops	31
11	4.11	Weeds	33
12	4.12	Pests that attack crops	33
13	4.13	Fodder crops	34
14	4.14	Fruit Plants	34
15	4.15	Medicinal Plants	35
16	4.16	Ornamental Plants	37
17	4.17	Timber Trees	38
18	4.18	Other Domesticated Plants	38
19	4.19	Wet land biodiversity	39

LIST OF TABLES

ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF -PEECHI VAZHANI WILD LIFE SANCTUARY

Dissertation Submitted to

UNIVERSITY OF CALICUT

In partial requirement for the award of Master of Science in

ENVIRONMENTAL SCIENCE

By

CHRISTY M B

Reg. No: CCAVMES006

CHRIST COLLEGE (AUTONOMOUS) IRINJALAKUDA

Batch: 2021-2023

Under the Guidance of

Dr REKHA V B

ASSISTANT PROFESSOR

DEPARTMENT of GEOLOGY and ENVIRONMENTAL SCIENCE

Christ College (Autonomous) Irinjalakuda

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled **"ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF -PEECHI VAZHANI WILD LIFE SANCTUARY"** is an authentic record of the work carried out by **Ms Christy M B** under guidance of **Dr Deepu Sivadas** Scientist B, Forest Ecology Department, Kerala Forest Research Institute (KFRI), Peechi in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Subin K Jose

Asst.Professor& Head Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

Examiners:

1.

2.

DEPARTMENT OF GEOLOGY AND ENVIRONMENTAL SCIENCE

CHRIST COLLEGE (AUTONOMOUS), IRINJALAKUDA

THRISSUR-680125

CERTIFICATE

This is to certify that the dissertation entitled "ASSESSMENT OF EFFECTIVENESS OF PROTECTED AREA MANAGEMENT OF -PEECHI VAZHANI WILD LIFE SANCTUARY" is an authentic record of the work carried out by Ms Christy M B under co-guidance of Dr Rekha V B, Assistant Professor, Department of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda in partial requirement for the award of Master of Science in Environmental Science is submitted to the University of Calicut during the academic year 2021-2023.

Dr Rekha V B

Assistant Professor Dept. of Geology & Environmental Science Christ College (Autonomous), Irinjalakuda

DECLARATION

I hereby declare that the project work entitled "Assessment of Effectiveness of Protected Area Management – Peechi Vazhani Wildlife Sanctuary" submitted to University of Calicut in partial requirement for the award of Master of Science in Environmental Science, was carried out by me during the period of April 2023 to July 2023 under the guidance and supervision of **Dr Deepu Sivadas** Scientist B, Forest Ecology Department, Kerala Forest Research Institute(KFRI),Peechi and no part thereof been presented before, for any other degree or diploma in any university.

Place:

Date:

Christy M B

ACKNOWLEDGEMENT

I take immense pleasure to express my sincere and deep sense of gratitude to my guide **Dr Deepu Sivadas,** Scientist B, Kerala Forest Research Institute for his timely guidance which enabled me to complete this work successfully. I shall be thankful to him for his valuable suggestions and encouragement given to me throughout this investigation.

I express my gratitude to my project guide **Dr Rekha V B**, Asst. Professor, Dept. of Geology and Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable guidance and encouragement throughout the course of this work. I place onrecord my profound gratitude to **Dr Subin K Jose**, Head of the Department of Environmental Science, Christ College (Autonomous), Irinjalakuda for the valuable advice and support throughout this project work.

I express my sincere thanks to all staffs of Forest Ecology department, friends and colleagues, of my college and KFRI for their various helps and cooperation during the work and to all those who have contributed directly or indirectly for successful completion of the work.

My acknowledgment would not be complete without acknowledging my parents. Any attempt at any level can't be satisfactorily completed without the support, guidance, and constant inspiration of my parents.

Christy M B

ABSTRACT

Globally protected areas are crucial for the Millennium Development Goals and provide opportunities for conservation and restoration projects. With over 100,000 protected areas covering around 12% of the Earth's surface, these areas are essential for conserving biodiversity and ensuring the environment's sustainability. However, their coverage varies significantly between nations and ecoregions, and many sites are now threatened by development. Kerala, for example, has a significant forest cover, with Wayanad having the most greenery among the 14 districts.

Protected areas are designated for their natural, ecological, or cultural importance, and are essential for conserving biodiversity and preventing the decline of the planet's ability to sustain human life. They provide essential ecosystem services such as water, food, clothing, housing, transportation, and medications. Protected areas also serve as sanctuaries and strongholds for many species, ensuring ecological resilience and protecting humans from climate-related disasters.

Protected areas also serve as major sources of revenue, providing jobs and means of subsistence for the tourism sector, and supporting industries producing outdoor gear. They also safeguard resources with significant economic value, such as water and fisheries. Preserving species in protected areas increases the likelihood of new drugs being discovered.

Protected areas offer various benefits to society's culture, ecology, spirituality, and science, including maintaining biodiversity and halting extinction disasters. Successful agrobiodiversity conservation in protected areas, including traditional protected areas with crop wild relatives and on-farm areas, is essential for preserving populations, species, and genetic variety. However, these areas face challenges such as climate change, development beyond designated boundaries, water scarcity and pollution, invasive species, and disrupted wildlife movement pathways.

Instilling a conservation ethic in today's youth is crucial for the future of protected areas, as they will be subject to neglect and encroachment. By promoting conservation and promoting responsible use of natural resources, protected areas can continue to provide valuable benefits for society and the environment.

CONTENTS

1.INTRODUCTION1	
1.1 SIGNIFICANCE OF PROTECTED AREA	
1.2 CHALLENGES OF PROTECTED AREA 6	
1.3 EFFECTIVENESS OF PROTECTED AREA MANAGEMENT6	
1.4 WHAT THIS STUDY ADDRESSES	
2. LITERATURE REVIEW10	
3. MATERIALS AND METHODS18	
3.1 STUDY AREA: PEECHI VAZHANI WILDLIFE SANCTUARY18	
3.2 METHODOLOGY	
3.3 QUESTIONNAIRE	
4.RESULTS	
4.1 TRIBAL COMMUNITIES IN THE STUDY AREA	
4.2 NFTPs AS LIVELIHOOD OF TRIBALS	
4.3 CROP DAMAGE	
4.4 HUMAN CASUALITIES40	
4.5 NWFTP COLLECTION40	
4.6 GRAZING41	
4.7 ENERGY42	
4.8 INCOME	
4.9 POACHING42	
4.10 ENCROACHMENT	
4.11 MANAGEMENT OF PROTECTED AREA	

6.REFERENCES	
5. DISCUSSION AND CONCLUSION	47
4.14 STAFF STRENGTH	45
4.13 FOREST FIRE	45
4.12 TOURISM	44

LIST OF FIGURES

SI No.	TITLE	PAGE No.
1	Figure 3.1 Peechi Vazhani wildlife sanctuary map	20
2	Figure 3.2 Peechi Vazhani wildlife sanctuary entrance	23
3	Figure 3.3 Peechi forest station	23
4	Figure 3.4 Vaniyampara forest station	24
5	Figure 3.5 Olakkara forest station	24
6	Figure 4.1 Composition of family income of forager households	34
7	Figure 4.2 Destructive and non-destructive harvesting percentage	36
8	Figure 4.3 Major tribal communities in the study area	37
9	Figure 4.4 Number of species used in non-Timber Forest products	38
10	Figure 4.5 Comparison of tourism count year wise	44

LIST OF TABLES

SI No.	TITLE	PAGE No.
1	Table 1: Staff strength of Peechi forest station	46
2	Table 2: Staff strength of Vaniyampara forest station	46
3	Table 3: Staff strength of Olakkara forest station	46