
# DOMINATION IN GRAPHS

# Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### ADWIN OUSAN

Register No.CCAVMMS001



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

## CERTIFICATE

This is to certify that the project entitled "DOMINATION IN GRAPHS" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Mr. ADWIN OUSAN (CCAVMMS001) during the period of his study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Fr. Dr. Vincent N S Assistant Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 02 june 2023

## DECLARATION

I hereby declare that the project work entitled "**DOMINATION IN GRAPHS**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 ADWIN OUSAN

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Fr. Dr. Vincent N S, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**DOMINATION IN GRAPHS**"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### ADWIN OUSAN

# Contents

| $\mathbf{Li}$ | st of          | Figures                                       | iii |  |  |  |  |  |  |  |  |
|---------------|----------------|-----------------------------------------------|-----|--|--|--|--|--|--|--|--|
| In            | Introduction 1 |                                               |     |  |  |  |  |  |  |  |  |
| $\mathbf{Li}$ | terat          | ure Review                                    | 3   |  |  |  |  |  |  |  |  |
| 1             | Def            | initions On Domination In Graphs              | 10  |  |  |  |  |  |  |  |  |
|               | 1.1            | Dominating sets in graphs                     | 10  |  |  |  |  |  |  |  |  |
|               | 1.2            | Ainimal and Minimum Dominating Sets           |     |  |  |  |  |  |  |  |  |
|               | 1.3            | Bounds of Domination Number                   |     |  |  |  |  |  |  |  |  |
|               | 1.4            | Types Of Domination                           | 13  |  |  |  |  |  |  |  |  |
|               |                | 1.4.1 Total(Open) Dominating sets             | 13  |  |  |  |  |  |  |  |  |
|               |                | 1.4.2 Independent domination and irredundance | 15  |  |  |  |  |  |  |  |  |
|               |                | 1.4.3 Connected Dominating Sets               | 16  |  |  |  |  |  |  |  |  |
|               |                | 1.4.4 Dominating Cliques                      | 17  |  |  |  |  |  |  |  |  |
|               | 1.5            | Varieties Of Domination                       | 18  |  |  |  |  |  |  |  |  |
|               |                | 1.5.1 Global Domination                       | 18  |  |  |  |  |  |  |  |  |
|               |                | 1.5.2 Total Global Domination                 | 19  |  |  |  |  |  |  |  |  |
|               |                | 1.5.3 Multiple Domination                     | 20  |  |  |  |  |  |  |  |  |

|          |       |          | Strong and Weak Domination |    |
|----------|-------|----------|----------------------------|----|
| <b>2</b> | The   |          | On Domination In Graphs    | 22 |
| 3        | App   | olicatio | ons Of Domination          | 29 |
|          | 3.1   | Sets C   | Of Representatives         | 30 |
|          | 3.2   | School   | l Bus Routing              | 32 |
|          | 3.3   | Radio    | Stations                   | 33 |
| C        | onclu | ision    |                            | 36 |
| R        | efere | nces     |                            | 37 |

# List of Figures

| 1.1  | The two dominating sets $S_1$ and $S_2$ in the graph $G$                     | 11 |
|------|------------------------------------------------------------------------------|----|
| 1.2  | Bipartite Graph                                                              | 11 |
| 1.3  | Peterson Graph                                                               | 12 |
| 1.4  | A graph $G$ with minimum open dominating set $\ldots \ldots \ldots$          | 13 |
| 1.5  | Peterson graph                                                               | 14 |
| 1.6  | Graph $G$                                                                    | 14 |
| 1.7  | Graph $G$                                                                    | 15 |
| 1.8  | A graph $G$ with maximal dominating set $\ldots \ldots \ldots \ldots \ldots$ | 15 |
| 1.9  | A graph $G$ with maximal dominating set $\ldots \ldots \ldots \ldots \ldots$ | 16 |
| 1.10 | A graph $G$ with maximal dominating set $\ldots \ldots \ldots \ldots \ldots$ | 17 |
| 1.11 | A graph $G$ with maximal dominating set $\ldots \ldots \ldots \ldots \ldots$ | 18 |
| 1.12 | Graph $G$ and Graph $\overline{G}$                                           | 18 |
| 1.13 | Graph $G$ and Graph $\overline{G}$                                           | 19 |
| 1.14 | Graph $C_5$                                                                  | 20 |
| 1.15 | Graph $G_1$ and Graph $G_2$                                                  | 22 |
| 1.16 | Graph $G_1$ and Graph $G_2$                                                  | 23 |
| 3.1  | Graph $G$                                                                    | 30 |

| 3.2 | A Bipartite Graph         | 31 |
|-----|---------------------------|----|
| 3.3 | Cycle Dominating Set      | 32 |
| 3.4 | Connected Dominating Sets | 33 |
| 3.5 | Graph $(a)$               | 34 |
| 3.6 | Graph $(b)$               | 35 |

# Introduction

The theory of graph is one of the new field of mathematics. While the history of mathematics is long and sound history of mathematical graph theory has been originated by 1736 with the work of Euler's solution of konisberg bridge problem.

Any mathematical object having points and connections between them may be called graphs. Graphs are severe as mathematical modules to analyze successfully many concrete problems. In mathematics,graph theory is a study of graphs,which are mathematical structures used to model pairwise relation between objects.

In 1850, chess freaks in Europe give thought to issue for finding the least numeral of queens that is set on a chess board with a goal that each one of the blocks are either charged by a queen or inhibited by a queen. The "five queens" problem can be said to be the origin of the study of the dominating sets in graphs. Also the dominating queen problems can be stated in general as the domination of vertices of a graph.

In **Chapter 1** covers some necessary definitions, terms and concepts in domination in graph. Also we will introduces the domination number on a graph and bounds of domination number. It also covers types of domination and varieties

## PRODUCT GRAPH

# Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics

by

#### HANNA MUSTHAFA

#### Register No.CCAVMMS002



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

 $\mathbf{2023}$ 

## CERTIFICATE

This is to certify that the project entitled "**PRODUCT GRAPH**" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics, is a bonafide record of work done by **Mrs. HANNA MUSTHAFA (CCAVMMS002)** during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2021-2023

Mr. Naveen V V Assistant Professor (Ad-hoc) Department of Mathematics Christ College (Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College (Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 02 June 2023

## DECLARATION

I hereby declare that the project work entitled "**PRODUCT GRAPH**" submitted to Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 Hanna Musthafa

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration, support and guidance of all those people who have been instrumental for making this project a success.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**PRODUCT GRAPH**"

I express my deepest thanks to my guide Mr. Naveen V V, Assistant Professor (Ad-hoc) Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and also Dr. Seena V, Assistant Professor, who deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ and all other teachers of the department for providing me the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Hanna Musthafa

# Contents

| Li | st of | Figures                                                                        | iii       |
|----|-------|--------------------------------------------------------------------------------|-----------|
| In | trod  | uction                                                                         | 1         |
| 1  | Pre   | liminaries                                                                     | <b>2</b>  |
| 2  | Pro   | duct Graph                                                                     | 8         |
|    | 2.1   | Different types of graph product                                               | 8         |
|    | 2.2   | Cartesian product                                                              | 9         |
|    | 2.3   | Direct Product                                                                 | 10        |
|    | 2.4   | Strong Product                                                                 | 12        |
|    | 2.5   | Lexicographic Product                                                          | 16        |
|    | 2.6   | Corona Product                                                                 | 17        |
| 3  | Pro   | jections and Layers                                                            | 19        |
| 4  | Cla   | ssification of Products                                                        | <b>21</b> |
|    | 4.1   | Products for which both projections are weak homomorphism $\ .$ .              | 21        |
|    | 4.2   | Product for which only one projection is a weak homomorphism $% \mathcal{A}$ . | 24        |
|    | 4.3   | Associative graph products                                                     | 26        |

| <b>5</b> | Alge  | ebraic and Metric properties of family of group | <b>27</b> |  |  |  |  |  |  |  |  |  |  |  |
|----------|-------|-------------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|--|--|
|          | 5.1   | Algebraic properties                            | 27        |  |  |  |  |  |  |  |  |  |  |  |
|          | 5.2   | Metric properties                               | 29        |  |  |  |  |  |  |  |  |  |  |  |
| Co       | onclu | sion                                            | 32        |  |  |  |  |  |  |  |  |  |  |  |
| Bi       | bliog | raphy                                           | 33        |  |  |  |  |  |  |  |  |  |  |  |

# List of Figures

| 1.1 | •••   |     | • | • | • • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 2  |
|-----|-------|-----|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1.2 |       |     | • |   |     | • |   |   | • | • | • | • | • | • |   | • | • | • |   |   |   | • | • | • | • |   |   |   |   |   |   |   | • | 3  |
| 1.3 | •••   |     |   | • |     |   | • |   | • | • | • |   | • | • | • | • | • |   |   |   | • | • |   | • | • |   |   |   |   | • |   |   | • | 3  |
| 1.4 | •••   |     |   | • |     |   | • |   | • | • | • |   | • | • | • | • | • |   |   |   | • | • |   | • | • |   |   |   |   | • |   |   | • | 4  |
| 1.5 | • • • |     |   | • |     |   |   |   | • | • | • | • | • | • |   | • | • | • |   |   | • | • | • | • | • |   |   |   |   |   | • |   | • | 4  |
| 1.6 | • • • |     |   | • |     |   |   |   | • | • | • | • | • | • |   | • | • | • |   |   | • | • | • | • | • |   |   |   |   |   | • |   | • | 4  |
| 1.7 |       |     | • | • |     |   | • | • | • | • | • | • | • | • | • | • | • | • |   | • | • | • | • | • | • | • | • | • | • | • |   |   | • | 5  |
| 1.8 |       | • • |   | • |     |   | • |   | • | • | • | • | • | • | • | • | • | • | • | • | • | • |   | • | • |   |   |   |   | • | • | • | • | 5  |
| 1.9 |       |     | • | • |     |   |   | • | • | • | • | • | • | • |   | • | • | • | • |   | • | • | • | • | • |   | • | • | • | • |   | • | • | 6  |
| 2.1 |       |     |   |   |     |   |   |   |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   |   | • |   |   |   |   |   |   |   | • | 9  |
| 2.2 |       |     |   | • |     |   |   |   | • | • | • | • | • | • |   | • | • | • |   |   |   | • |   | • | • |   |   |   |   |   |   |   | • | 10 |
| 2.3 |       |     |   |   |     |   |   |   | • | • | • | • | • | • |   | • | • | • |   |   |   | • | • | • | • |   |   |   |   |   |   |   | • | 11 |
| 2.4 | •••   |     |   | • |     |   | • |   | • | • | • |   | • | • | • | • | • |   |   |   | • | • |   | • | • |   |   |   |   | • |   |   | • | 13 |
| 2.5 | •••   |     |   | • |     |   | • |   | • | • | • |   | • | • | • | • | • |   |   |   | • | • |   | • | • |   |   |   |   | • |   |   | • | 14 |
| 2.6 | •••   |     |   | • |     |   |   |   | • | • | • | • | • | • |   | • | • | • |   |   | • | • | • | • | • |   |   |   |   |   | • |   | • | 15 |
| 2.7 |       |     | • |   |     |   |   | • | • | • | • | • | • | • |   | • | • | • |   |   | • | • | • | • | • |   |   |   | • |   |   |   | • | 15 |
| 2.8 |       |     |   |   |     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 16 |

| 2.9  |  | • |   |  | • |   | • |  |  |  |  | • |  |  |   |   | • |  |  |   |  | • | • | 17 |
|------|--|---|---|--|---|---|---|--|--|--|--|---|--|--|---|---|---|--|--|---|--|---|---|----|
| 2.10 |  | • | • |  | • | • | • |  |  |  |  |   |  |  | • | • |   |  |  | • |  | • | • | 18 |

# Introduction

Graph products are applied in many areas like human genetics, a dynamic location problem etc. In this project, we consider different types of graph products and some properties of them.

Chapter 1 is a brief introduction to graph theory and Product Graph. Our main objects of study appear in chapter 2, where we introduce three fundamental graph products, namely the certain products, the direct product and the strong product. This is followed by the classification of certain associative products, providing an explanation of why the three products mentioned above are the most natural off all products. The classification also leads to a fourth product worthy of special attention, the lexicographic products. Last chapter investigates the semi ring and metric structure of the four standard products. We can have a glimpse through this product graphs.

For definitions, terminologies, notations and results, we follow mainly [1], [2], [3], [4].

### MATROIDS

# Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### HRIDYA HARIPRAKASH

Register No. CCAVMMS003



**Department Of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "MATROIDS" submitted to the Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Ms. HRIDYA HARIPRAKASH (CCAVMMS003) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Ms. Merin Mathew Adhoc Faculty Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

## DECLARATION

I hereby declare that the project work entitled "MATROIDS" submitted to the Christ College(Autonomous), Irinjalakuda in partial fulfillment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023

#### HRIDYA HARIPRAKASH

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental in making this project a success.

I express my deepest thanks to my guide, Ms. Merin Mathew, Adhoc Faculty, Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support, and guidance, it finds difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**MATROIDS**".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me with the necessary facilities to complete this project on time.

Dr. Seena V, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### HRIDYA HARIPRAKASH

# Contents

| In       | trod  | uction                                       | 1  |
|----------|-------|----------------------------------------------|----|
| Pı       | relim | inaries                                      | 3  |
| 1        | Fun   | damental Concepts and Examples               | 5  |
|          | 1.1   | Examples of Matroids                         | 6  |
|          |       | 1.1.1 The Uniform Matroid $U_{k,n}$          | 6  |
|          |       | 1.1.2 Vectorial Matroids                     | 6  |
|          |       | 1.1.3 Cycle Matroids of Graphs               | 6  |
|          | 1.2   | Loops and Parallel Elements                  | 7  |
|          | 1.3   | Properties of Independent Sets and Bases     | 8  |
| <b>2</b> | Axi   | om Systems for a Matroid                     | 10 |
|          | 2.1   | Base Axioms                                  | 10 |
|          | 2.2   | Rank Axiom 1                                 | 11 |
|          | 2.3   | Rank Axiom 2                                 | 13 |
|          | 2.4   | Closure Axioms                               | 14 |
|          | 2.5   | Circuit Axioms                               | 18 |
|          |       | 2.5.1 Some Elementary Properties of Circuits | 18 |

| List | of | Symbols |
|------|----|---------|
| LISU | OI | Symbols |

| 3 | Dua        | Duality 2            |                                            |    |  |  |
|---|------------|----------------------|--------------------------------------------|----|--|--|
|   | 3.1        | The D                | Dual Matroid                               | 21 |  |  |
|   | 3.2        | The H                | lyperplanes of a Matroid                   | 24 |  |  |
|   | 3.3        | Paving               | g Matroids                                 | 27 |  |  |
| 4 | Sub        | Matr                 | oids and Matroid Connection                | 29 |  |  |
|   | 4.1        | Sub M                | fatroids                                   | 29 |  |  |
|   |            | 4.1.1                | Truncation                                 | 29 |  |  |
|   |            | 4.1.2                | Restriction                                | 30 |  |  |
|   |            | 4.1.3                | Contraction                                | 30 |  |  |
|   |            | 4.1.4                | Minors                                     | 31 |  |  |
|   | 4.2        | 2 Matroid Connection |                                            | 32 |  |  |
|   |            | 4.2.1                | Two Theorems about Circuits and Cocircuits | 32 |  |  |
|   |            | 4.2.2                | Connectivity                               | 33 |  |  |
| C | Conclusion |                      |                                            |    |  |  |
| R | References |                      |                                            |    |  |  |

# Introduction

Many results of graph theory extend or simplify the theory of Matroids. These include the fundamental concepts and their examples, the strong duality between maximum matching and minimum vertex over in bipartite graphs, and the geometric duality relating planar graphs and their duals, sub matroids, and transversal matroids. Matroids arise in many contexts but are special enough to have rich combinatorial structure when a result from graph theory generalizes to matroids which can then be interpreted in other special cases. Several difficult theorems about graphs have found easier proofs using matroids.

Matroids were introduced by Whitney (1935) to study planarity and algebraic aspects of graphs by MacLane (1936) to study geometric lattices and by Vander Waerder (1937) to study independence in vector space. Most of the language comes from this context. As the word suggests Whitney conceived a matroid as an abstract generalization of a matrix, and much of the language of the theory is based on that of linear algebra. However, Whitney's approach was also to some extent motivated by his earlier work in graph theory and as a result, some of the matroid terminologies have a distinct graphical flavor. Two important papers by Rado on the combinatorial applications of matroids and finite matroids, the

#### Introduction

subject lay virtually dormant until Tutte, published his fundamental papers on matroids and graphs and Rado studied the representability problem for matroids. Since then interest in matroids and their applications in combinatorial theory has accelerated rapidly. This is probably due to the discovery independently by Edmonds and Fulkerson and Mirsky and Perfect of a new, important class of matroids called transversal matroids. In graph theory, the main benefit of a matroid treatment seems to be a much more natural understanding of dual concepts such as the structure of the set of cocycles or the effect of contraction of a set of edges of a graphs.

# Preliminaries

- The concept of a graph and a directed or oriented graph which we call a digraph.
- We denote a graph G by a pair (V(G), E(G)) where V = V(G) is the vertex set and E = E(G) is the set of edges. The edge e = (u, v) is said to join the vertices u and v are adjacent vertices while u and v are called the endpoints of the edge e = (u, v).
- If 2 edges  $e_1, e_2$  have a common endpoint they are said to be incident. We often denote the edge e = (u, v) by uv or vu.
- A loop of a graph is an edge of the type (x, x). Two edges are parallel if they have common endpoints and are not loops.
- A graph is simple if it has no loops or parallel edges.
- The degree of vertex v is the number of edges having G as an endpoint, and is denoted by deg(v).
- A graph is regular if all its vertices have the same degree.
- Two graph  $G_1, G_2$  are isomorphic if there is a bijection  $\phi: V(G_1) \to V(G_2)$

## Nets And Filters

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### KAVITHA E H

#### Register No.CCAVMMS004



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

2023

## CERTIFICATE

This is to certify that the project entitled "Nets And Filters" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms.KAVITHA E H (CCAVMMS004) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Dr. Seena V. Asst. Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

## DECLARATION

I hereby declare that the project work entitled "**Nets And Filters**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023 Kavitha E H

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Dr. Seena V, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**Nets And Filters**"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

My project guide Dr. Seena V, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

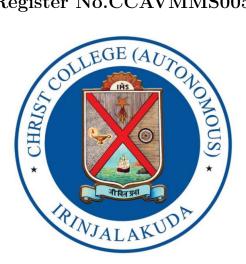
Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Kavitha E H

# Contents

| In                 | Introduction              |                                           |    |  |  |
|--------------------|---------------------------|-------------------------------------------|----|--|--|
| 1                  | 1 Preliminaries           |                                           |    |  |  |
| 2 Nets in Topology |                           |                                           |    |  |  |
|                    | 2.1                       | Introduction                              | 6  |  |  |
|                    | 2.2                       | Directed Sets and Nets                    | 7  |  |  |
|                    | 2.3                       | Convergence in Net                        | 9  |  |  |
|                    | 2.4                       | Subnets and Cluster points                | 12 |  |  |
| 3                  | Filt                      | ers                                       | 20 |  |  |
|                    | 3.1                       | Filter                                    | 20 |  |  |
|                    | 3.2                       | Convergence and Cluster points of Filters | 23 |  |  |
|                    | 3.3                       | Continuity of Filters                     | 26 |  |  |
| 4                  | rafilters and Compactness | 29                                        |    |  |  |
|                    | 4.1                       | Ultrafilters                              | 29 |  |  |
|                    | 4.2                       | Convergence and Compactness               | 31 |  |  |
|                    | 4.3                       | Ultra-closed Filters                      | 33 |  |  |

| List of Symbols                   |    |
|-----------------------------------|----|
| 5 Application of Nets and Filters | 36 |
| Conclusion                        | 38 |
| References                        | 40 |


### FUZZY LOGIC

### Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### NOBLE JOSE

#### Register No.CCAVMMS005



**D**epartment of Mathematics

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "Fuzzy Logic" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of original work done by Mr.NOBLE JOSE (CCAVMMS005) during the period of his study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Ms. Gifty Thomas Guest Lecturer Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

### DECLARATION

I hereby declare that the project work entitled "**Fuzzy Logic**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 NOBLE JOSE

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Ms. Gifty Thomas, Guest Lecturer, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**FUZZY LOGIC**"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

My project guide Ms. Gifty Thomas, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

NOBLE JOSE

## Contents

| List of      | f Figures                                   | iii      |
|--------------|---------------------------------------------|----------|
| Introd       | luction                                     | 1        |
| $1  { m FU}$ | ZZY SET                                     | <b>2</b> |
| 1.1          | Preliminaries                               | 2        |
|              | 1.1.1 Crisp Set                             | 2        |
|              | 1.1.2 Properties of Sets                    | 2        |
|              | 1.1.3 Truth Tables                          | 3        |
|              | 1.1.4 Tautology                             | 4        |
| 1.2          | Fuzzy Set                                   | 4        |
| 1.3          | Relation between Fuzzy sets                 | 5        |
| 1.4          | Operations on Fuzzy set                     | 6        |
| 1.5          | Support of a set                            | 6        |
| 1.6          | Height of a Fuzzy set                       | 7        |
| 1.7          | $\alpha$ -cuts of a Fuzzy Set               | 7        |
| 1.8          | $\alpha$ -cut Decomposition Theorem         | 8        |
| 1.9          | Fuzzy Relations                             | 9        |
| 1.1(         | ) max-min Composition of Two Fuzzy Relation | 10       |

| <b>2</b> | FUZ                              | ZZY L                           | OGIC                                                                 | 11 |  |  |  |  |  |
|----------|----------------------------------|---------------------------------|----------------------------------------------------------------------|----|--|--|--|--|--|
|          | 2.1                              | Three                           | Valued Logic                                                         | 11 |  |  |  |  |  |
|          | 2.2                              | Fuzzy                           | Logics                                                               | 13 |  |  |  |  |  |
|          | 2.3                              | Fuzzy                           | uzzy Propositions and their Interpretations in terms of Fuzzy set 14 |    |  |  |  |  |  |
|          | 2.4                              | Fuzzy                           | Rules and their Interpretations in Terms of Fuzzy Relations          | 17 |  |  |  |  |  |
| 3        | БТ I                             | 77V N                           | IETHOD IN DECISION THEODY                                            | 19 |  |  |  |  |  |
| 3        | FUZZY METHOD IN DECISION THEORY1 |                                 |                                                                      |    |  |  |  |  |  |
|          | 3.1                              | Introduction to Decision Making |                                                                      |    |  |  |  |  |  |
|          | 3.2                              | Introd                          | ntroduction to Fuzzy Method in Decision Making                       |    |  |  |  |  |  |
|          |                                  | 3.2.1                           | Single Stage, Single Person, Simple Optimization                     | 20 |  |  |  |  |  |
|          |                                  | 3.2.2                           | Single Stage, Single Person, Optimization under Constraints          | 22 |  |  |  |  |  |
|          |                                  | 3.2.3                           | Single Stage, Single Person, Optimization based on Multi-            |    |  |  |  |  |  |
|          |                                  |                                 | criteria                                                             | 25 |  |  |  |  |  |
|          |                                  | 3.2.4                           | Single Stage, Multi-Person Decision Making                           | 29 |  |  |  |  |  |

# List of Figures

| 2.1 | MODEL 1 | • | ••• | <br>• | • | • | • | • | <br>• | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 15 |
|-----|---------|---|-----|-------|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 2.2 | MODEL 2 | • |     |       |   | • | • | • | <br>• | • | • | • | • |   | • | • |   | • |   | • | • | • | • | • |   | • | • | 16 |
| 2.3 | MODEL 3 | • |     |       |   |   |   |   |       | • | • | • |   |   |   |   |   | • |   |   | • |   | • | • | • | • | • | 16 |

### **GRAPH COLOURING**

### Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### SANJAY SOJAN

#### Register No.CCAVMMS006



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

2023

### CERTIFICATE

This is to certify that the project entitled "GRAPH COLOURING" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Mr.SANJAY SOJAN (CCAVMMS006) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Ms. Merin Mathew Adhoc Faculty Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

### DECLARATION

I hereby declare that the project work entitled "GRAPH COLOURING" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023 Sanjay Sojan

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Ms. Merin Mathew, Adhoc Faculty, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "GRAPH COLOURING"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr. Seena V, Assistant Professor deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Sanjay Sojan

## Contents

| Li       | st of | Figure  | 'S                                                               | iii |
|----------|-------|---------|------------------------------------------------------------------|-----|
| In       | trod  | uction  |                                                                  | 1   |
| 1        | Pre   | liminar | ies                                                              | 3   |
|          | 1.1   | Introd  | uction                                                           | 3   |
|          | 1.2   | Basic ( | Graph Theory                                                     | 4   |
| <b>2</b> | Ver   | tex Co  | louring                                                          | 7   |
|          | 2.1   | Vertex  | Colouring                                                        | 7   |
|          | 2.2   | Vertex  | Colouring Algorithms                                             | 14  |
|          |       | 2.2.1   | The simple sequential colouring algorithm $\ldots \ldots \ldots$ | 15  |
|          |       | 2.2.2   | The Largest sequential algorithm<br>(Welsh and powell)           | 17  |
|          |       | 2.2.3   | The smallest-last sequential algorithm                           | 19  |
| 3        | Edg   | ge Colo | uring                                                            | 22  |
|          | 3.1   | Edge (  | Colouring                                                        | 22  |
| 4        | Maj   | p Color | uring                                                            | 27  |
|          | 4.1   | Map C   | Colouring                                                        | 27  |

#### Contents

|   | 4.2   | Four colour conjecture              | 27 |
|---|-------|-------------------------------------|----|
| 5 | App   | olicatins of Graph Colouring        | 30 |
|   | 5.1   | The Timetable problem               | 30 |
|   | 5.2   | The Assignment of Radio Frequencies | 31 |
|   | 5.3   | Application in Traffic Routing      | 31 |
|   | 5.4   | Scheduling an Oral Examination      | 33 |
| C | onclu | ision                               | 34 |
| R | efere | nces                                | 35 |

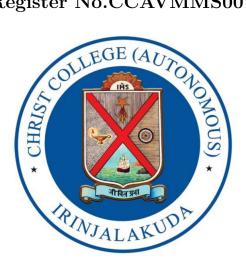
# List of Figures

| 2.1        | A 4-critical graph                                                             | 9  |
|------------|--------------------------------------------------------------------------------|----|
| 2.2        | Examples of clique                                                             | 11 |
| 2.3        | Brook's Theorem Graph                                                          | 14 |
| 2.4        | Example 2.2.1                                                                  | 16 |
| 2.5        | Example 2.2.2                                                                  | 18 |
| 2.6        | Smallest-last sequential algorithm graph                                       | 20 |
|            |                                                                                |    |
| 3.1        | Grotsch graph                                                                  | 24 |
| 3.2        | The mycielski graphs $M_2$ and $M_3$                                           | 26 |
| 3.3        | The mycielski graphs $M_3$ and $M_4$                                           | 26 |
| <i>A</i> 1 | A map with its regions coloured                                                | 28 |
| 7.1        | $\mathbf{M}$ map with his regions coloured $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 40 |

## Introduction

The subject graph theory emerged while solving a problem associated with a bridge in konisberg, which was situated in Russia. In the year 1735 Euler considered this problem and constructed a structure to solve this problem. As a result the first formal 'graph' structure had been drawn, and a new branch of mathematics started its journey. Over the years, the theory of graphs have a tremendous growth in various directions. The structures-the graphs possesing special properties got attention of graph theorists as they found these graphs are very useful in studing many concepts in social and scientific scenario. The complete graphs and bipartite graphs introduced by A.F. Mobius have more recreational problems. Trees are useful in the calculation of currents in electrical works. Cayley studied particular analytical forms from differential calculus to study the trees. Based on the characterizations and applications of graphs, new areas of graph theory such as extremal graph theory, enumerative graph theory and random graph theory have been developed.

The graph colouring introduced by Arther Cayley is the process of assigning vertices of a graph such that no adjacent vertices have the same colour. The goal is to use the smallest number of colours possible to colour the graph, which is


### UMBRAL CALCULUS

### Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics

by

#### SEYIN.C.J.

#### Register No.CCAVMMS007



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "UMBRAL CALCULUS" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics, is a bonafide record of work done by Ms. SEYIN.C.J. (CCAVMMS007) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Mr. Naveen V V Assistant Professor (Ad-hoc) Department of Mathematics Christ College (Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College (Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

### DECLARATION

I hereby declare that the project work entitled "UMBRAL CALCULUS" submitted to Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 SEYIN.C.J.

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Mr. Naveen V V, Assistant professor (Ad-hoc), Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support, and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "UMBRAL CALCULUS".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr. Seena V, deserves a special word of thanks for her invaluable and generous help in preparing this project in LATEX.

I want to especially thank all the faculty of the library for providing various

facilities for this project.

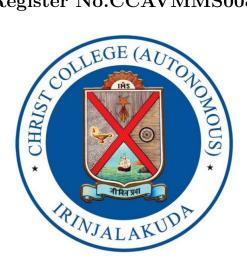
Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

SEYIN.C.J.

## Contents

| In       | trod            | uction                                              | 1  |  |  |  |  |  |
|----------|-----------------|-----------------------------------------------------|----|--|--|--|--|--|
| 1        | l Preliminaries |                                                     |    |  |  |  |  |  |
|          | 1.1             | Polynomials                                         | 2  |  |  |  |  |  |
|          | 1.2             | Definitions                                         | 4  |  |  |  |  |  |
|          | 1.3             | Power series                                        | 7  |  |  |  |  |  |
| <b>2</b> | The             | e Umbral Algebra                                    | 10 |  |  |  |  |  |
|          | 2.1             | Formal power series                                 | 10 |  |  |  |  |  |
|          | 2.2             | Formal power series as Linear Functionals           | 12 |  |  |  |  |  |
|          | 2.3             | Formal power series as Linear Operators             | 16 |  |  |  |  |  |
| 3        | She             | ffer Sequences and Examples                         | 19 |  |  |  |  |  |
|          | 3.1             | Sheffer sequences                                   | 19 |  |  |  |  |  |
|          | 3.2             | Examples of sheffer sequences                       | 23 |  |  |  |  |  |
| 4        | Um              | bral Operators and Umbral Shifts                    | 25 |  |  |  |  |  |
|          | 4.1             | Continuous Operators on the Umbral Algebra          | 27 |  |  |  |  |  |
|          | 4.2             | Umbral Shifts and Derivations of the Umbral Algebra | 30 |  |  |  |  |  |

|            | Contents |    |
|------------|----------|----|
|            |          |    |
| Conclusion |          | 33 |
|            |          |    |
| References |          | 34 |


### Variational Optimization

### Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### SHERIN P. JOHNSON

Register No.CCAVMMS008



Department of Mathematics

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "Variational Optimization" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms. SHERIN P. JOHNSON (CCAVMMS008) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Dr.Shinto K.G Assistant Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

### DECLARATION

I hereby declare that the project work entitled "Variational Optimization" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023 Sherin P. Johnson

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Dr.Shinto K.G Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from sir, both in the subject and otherwise. Without sir's advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic 'Variational Optimization'

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr.Seena V, Assistant Professor deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Sherin P. Johnson

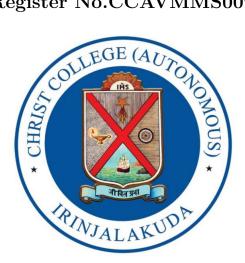
## Contents

| Li       | st of | Figures             |                                             |  |   | iii |  |  |  |  |  |  |
|----------|-------|---------------------|---------------------------------------------|--|---|-----|--|--|--|--|--|--|
| In       | trod  | uction              |                                             |  |   | 1   |  |  |  |  |  |  |
| 1        | Op    | ptimization methods |                                             |  |   |     |  |  |  |  |  |  |
|          | 1.1   | Optimization        | Problems                                    |  | • | 4   |  |  |  |  |  |  |
|          | 1.2   | Different typ       | es of Optimization                          |  | • | 6   |  |  |  |  |  |  |
|          | 1.3   | Direct search       | 1                                           |  | • | 8   |  |  |  |  |  |  |
|          | 1.4   | One-Dimensi         | onal search                                 |  | • | 9   |  |  |  |  |  |  |
|          |       | 1.4.1 Gold          | en Section Search plan                      |  | • | 9   |  |  |  |  |  |  |
|          |       | 1.4.2 Rose          | nbrock Method                               |  | • | 10  |  |  |  |  |  |  |
| <b>2</b> | Fu    | nctionals and       | l Extremum Condition                        |  |   | 12  |  |  |  |  |  |  |
|          | 2.1   | Functionals         |                                             |  | • | 12  |  |  |  |  |  |  |
|          |       | 2.1.1 Brac          | nistochrone Functional                      |  | • | 13  |  |  |  |  |  |  |
|          |       | 2.1.2 Area          | Functional                                  |  | • | 16  |  |  |  |  |  |  |
|          |       | 2.1.3 Cost          | Functional                                  |  | • | 19  |  |  |  |  |  |  |
|          | 2.2   | Extremum C          | ondition                                    |  | • | 20  |  |  |  |  |  |  |
|          |       | 2.2.1 Funda         | amental Necessary Condition for an Extremum |  | • | 20  |  |  |  |  |  |  |

| 3 | 3 Necessary condition for an Extremum                               |       |                                                                                          |    |
|---|---------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|----|
|   | 3.1 Euler-Lagrange Multiplier                                       |       |                                                                                          | 23 |
|   |                                                                     | 3.1.1 | Euler-Lagrange Multiplier Theorem for a Single Constraint                                | 23 |
|   |                                                                     | 3.1.2 | The Euler-Lagrange Multiplier Theorem for Many Con-<br>straints                          | 24 |
|   | 3.2 Geometric significance of Euler - Lagrange Multiplier Theorem . |       |                                                                                          |    |
| 4 | An                                                                  | Optin | num Consumption Policy                                                                   | 32 |
|   | 4.1                                                                 |       | Optimum Consumption Policy with Terminal Savings Con-<br>to During a Period of Inflation | 32 |
| C | Conclusion                                                          |       |                                                                                          |    |
| R | References                                                          |       |                                                                                          |    |

# List of Figures

| 1.1 | Brachistochrone              | 5  |
|-----|------------------------------|----|
| 1.2 | Golden Section Search        | 10 |
| 1.3 | Rosenbrock Method            | 11 |
|     |                              |    |
| 2.1 | Brachistochrone functional   | 13 |
| 2.2 | Area functional              | 16 |
| 2.3 | Graph of $y = x_2^2 - x_1^2$ | 22 |
|     |                              |    |
| 4.1 | Consumption Policy           | 34 |


### Algebraic Number Theory

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### SNEHA K.S

#### Register No.CCAVMMS009



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "Algebraic number theory" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Ms. SNEHA K.S (CCAVMMS009) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

> Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

### DECLARATION

I hereby declare that the project work entitled "Algebraic Number Theory" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 Sneha K.S

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide, Prof. Tintumol Sunny, Head of the Department, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "Algebraic number theory".

Dr. Seena V, Assistant Professor, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_E X$ .

I want to especially thank all the faculty of the library for providing various facilities for this project.

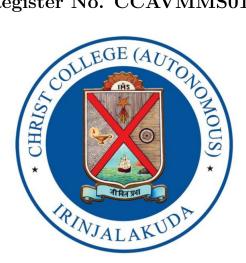
My friends always guided me when i get wrong and helped me to do this project . Thanks for my friends for the love and support. Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Sneha K.S

# Contents

| In       | trod | uction                                        | 1  |
|----------|------|-----------------------------------------------|----|
| 1        | Pre  | eliminaries                                   | 3  |
| <b>2</b> | Alg  | ebraic Numbers                                | 6  |
|          | 2.1  | Algebraic Numbers-an Introduction             | 6  |
|          | 2.2  | Conjugates and Discriminants                  | 9  |
|          | 2.3  | Algebraic Integers                            | 14 |
|          | 2.4  | Integral Bases                                | 18 |
| 3        | Fac  | torization into Irreducibles                  | 22 |
|          | 3.1  | Trivial Factorization                         | 22 |
|          | 3.2  | Factorization into Irreducibles               | 25 |
|          | 3.3  | Non-Unique Factorization into Irreducibles    | 28 |
| 4        | Nu   | mber-Theoretic Application                    | 32 |
|          | 4.1  | Primality Test                                | 33 |
|          | 4.2  | Arithmetic Geometry                           | 33 |
|          | 4.3  | Kummers Special Case of Fermat's Last Theorem | 34 |

|            | Contents |    |
|------------|----------|----|
| Conclusion |          | 35 |
| References |          | 36 |


### CAYLEY GRAPH

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### SREELAKSHMI K P

Register No. CCAVMMS010



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "CAYLEY GRAPH" submitted to Department of Mathematics in partial fulfillment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms. SREELAKSHMI K P(CCAVMMS010) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Fr. Dr. Vincent N S Assistant Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 02 June 2023

## DECLARATION

I hereby declare that the project work entitled "CAYLEY GRAPH" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of original project work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 SREELAKSHMI K P

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Fr. Dr. Vincent N S, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "CAYLEY GRAPH".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### SREELAKSHMI K P

# Contents

| Li | List of Figures |                                       | iii |
|----|-----------------|---------------------------------------|-----|
| In | ntroduction     |                                       |     |
| Li | terat           | ure Review                            | 3   |
|    | 0.1             | Basic Definitions on Graph Theory     | 6   |
| 1  | CA              | YLEY GRAPH                            | 8   |
|    | 1.1             | Types of Cayley graph                 | 9   |
|    | 1.2             | Vertex transitive graphs              | 11  |
|    | 1.3             | Graphical regular representation      | 14  |
|    | 1.4             | Digraph structure                     | 14  |
|    | 1.5             | Different types of digraph structures | 15  |
|    | 1.6             | Distance and Diameter                 | 15  |
|    | 1.7             | Isomorphism Digraph Structure         | 16  |
|    | 1.8             | Cayley Digraph Structure              | 16  |
| 2  | TH              | EOREMS ON CAYLEY GRAPH                | 18  |
| 3  | AP              | PLICATION OF CAYLEY GRAPH             | 26  |

| 3.1    | CPU-efficient Cayley graphs   | 28 |
|--------|-------------------------------|----|
| 3.2    | Space-efficient Cayley graphs | 29 |
| Conclu | sion                          | 31 |
| Refere | nces                          | 32 |

# List of Figures

| 1.1 | Graph G                               | 8  |
|-----|---------------------------------------|----|
| 1.2 | $Cay(\mathbb{Z}_8, \{2,3\})$          | 9  |
| 1.3 | $C(\mathbb{Z}_3 \times \mathbb{Z}_4)$ | 10 |
| 1.4 | Graph G                               | 10 |
| 1.5 | $C_5$ and $C_4$                       | 12 |
| 1.6 | Graph $G$                             | 13 |
| 1.7 | Graph $G_1$                           | 13 |
| 1.8 | Graph $G_2$                           | 13 |
| 1.9 | $Cay(G; S_1, S_2, S_3)$               | 17 |

## Introduction

Graph theory has become a very popular and rapidly growing area of Discrete Mathematics for its numerous theoretical development and countless application to practical problems. As a research area, graph theory is still relatively young, but it is maturing rapidly with many deep results have been discovered over the last couple of decades. The study of graph theory was introduced by Euler in 1736.For the contribution of Euler towards graph theory , he is known as the father of graph theory. But the term graph was introduced by Sylvester in paper published in 1878.It took 200 years since Euler's published in 1936 by Dencs konig.

The definition of Cayley graph was introduced by Arther Cayley in 1878 to explain the concept of abstract groups which described by a set of generators .In the last 50 years , the theory of cayley graphs has been grown in to substantial branch of algebraic graph theory .

A group is a set of elements together with an operation that combines any two of its elements to form a third element. The set and operation must satisfy group axioms, namely associativity, identity and inverse elements. Cayley graph depicts the elements of the groups as vertexes connected by colored edges. Every

### PHYLOGENETICS

## Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

### SREELAKSHMI VALSAN

Register No.CCAVMMS011



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

### CERTIFICATE

This is to certify that the project entitled "PHYLOGENETICS" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Ms. SREELAKSHMI VALSAN (CCAVMMS011) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Ms. Gifty Thomas Assistant Professor (Ad-hoc) Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 31 March 2023

## DECLARATION

I hereby declare that the project work entitled "**PHYLOGENETICS**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 31 March 2023 SREELAKSHMI VALSAN

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Ms. Gifty Thomas, Assistant Professor (Ad-hoc), Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support, and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**PHYLOGENETICS**".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me the necessary facilities to complete this project on time.

My project guide, Ms. Gifty Thomas, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### SREELAKSHMI VALSAN

# Contents

| Li       | List of Figures |                                     | ii |
|----------|-----------------|-------------------------------------|----|
| In       | trod            | uction                              | 1  |
| 1        | Pre             | liminaries                          | 3  |
|          | 1.1             | Undirected and directed graphs      | 3  |
|          | 1.2             | Trees                               | 9  |
|          | 1.3             | Rooted DAGs                         | 10 |
| <b>2</b> | Cor             | nbinatorics of Trees                | 12 |
|          | 2.1             | Splits and clades                   | 12 |
|          | 2.2             | Refinements and Consensus Trees     | 14 |
|          | 2.3             | Distance methods                    | 15 |
| 3        | Alg             | orithms and applications            | 23 |
|          | 3.1             | Phylogenetic networks from splits   | 23 |
|          | 3.2             | Phylogenetic networks from clusters | 29 |
| C        | onclu           | ision                               | 32 |
| R        | efere           | nces                                | 33 |

# List of Figures

| 1.1 | Overview                                                                                                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2 | Undirected graph, Directed graph, and DAG                                                                                                                                    |
| 1.3 | Graph $G$                                                                                                                                                                    |
|     |                                                                                                                                                                              |
| 2.1 | An edge inducing the split $a, b, d/c, e, f. \ldots $ |
| 2.2 | Two trees and their common refinement                                                                                                                                        |
| 2.3 | Dissimilarities between taxa 18                                                                                                                                              |
| 2.4 | (a) A distance matrix $D$ (b) UPGMA tree $\ldots \ldots \ldots \ldots 21$                                                                                                    |

## Introduction

Graphs come in two flavors, undirected and directed. One type of undirected graph that plays an important role is unrooted trees. In the context of directed graphs, we discuss the concept of a directed, acyclic graph (DAG) and then introduce rooted trees as an important example. We introduce a number of different kinds of traversals of trees or DAGs that are often used in algorithms. This chapter concludes by introducing the concepts of taxa, clusters, clades and splits.

Phylogenetic analysis aims at uncovering the evolutionary relationships between different species or taxa, to obtain an understanding of the evolution of life on Earth. Phylogenetic trees are widely used to address this task and are usually computed from molecular sequences. They also have applications in many other areas. For example, they are used to determine the age and rate of diversification of taxa, to understand the evolutionary history of gene families, in sequence-analysis methods to allow phylogenetic footprinting, in epidemiology to trace the origin and transmission of infectious diseases, or to study the coevolution of hosts and parasites. Introduction

In the literature, the term phylogenetic network is defined and used in a number of different ways, usually focusing on the specific type of network For example, a phylogenetic network is sometimes too narrowly defined as a rooted DAG whose leaves are labeled by taxa. The concept of a split plays an important role in the mathematics of phylogeny. It is motivated by the simple, but crucial, observation that every edge e in an unrooted phylogenetic tree T defines a bipartition of the underlying taxon set  $\mathcal{X}$  into two non-empty and disjoint subsets, A and B, known as a split. The splits of an unrooted phylogenetic tree uniquely define the topology of the tree and splits are used, for example, to compare different trees or to compute consensus trees. Any set of splits that is compatible corresponds to a phylogenetic tree and so one possible way to generalize from trees to networks is to consider sets of splits that are incompatible.

We present two different approaches. The first is the convex hull algorithm that computes the Buneman graph and can be applied to any set of splits, using an exponential number of nodes and edges in the worst case It is also used to compute median networks. The second is the circular network algorithm, which can be applied to any set of circular splits and produces an outer-labeled planar network with only a quadratic number of nodes and edges.

A typical application of a cluster network is that one is given multiple rooted gene trees for a set of species and one would like to produce a network to illustrate the parts of the phylogeny upon which the trees agree and which parts are resolved in different ways.

 $\mathbf{2}$ 

## Algebraic Topology

## Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

### AMEGHA K

### Register No.CCAVMMS012



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

2023

### CERTIFICATE

This is to certify that the project entitled "Algebraic Topology" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms. AMEGHA K (CCAVMMS012) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Fr. Dr. Vincent N S Assistant Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

## DECLARATION

I hereby declare that the project work entitled "Algebraic Topology" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of original project work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 Amegha K

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide, Fr. Dr. Vincent N S, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "Algebraic Topology"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr. Seena V, Assistant professor, deserves a special word of thanks for his invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Amegha K

## Contents

| $\mathbf{Li}$ | List of Figures |                                         |    |
|---------------|-----------------|-----------------------------------------|----|
| In            | introduction    |                                         | 1  |
| $\mathbf{Li}$ | terat           | ure Review                              | 4  |
| 1             | Defi            | nitions On Algebraic Topology           | 7  |
|               | 1.1             | Chains, Cycles, and $H_0U$              | 7  |
|               | 1.2             | Boundries, $H_1U$ , and Winding numbers | 8  |
|               | 1.3             | Chians on grids                         | 9  |
|               | 1.4             | Maps and homology                       | 9  |
|               | 1.5             | Covering spaces                         | 10 |
|               | 1.6             | G- Coverings                            | 10 |
|               | 1.7             | Covering transformations                | 11 |
|               | 1.8             | Morse theory basics                     | 11 |
|               | 1.9             | Poincare duality                        | 13 |
|               | 1.10            | Cup and cap product                     | 13 |
|               | 1.11            | Singular homology groups                | 13 |
| •             | Б               |                                         | 10 |

2 Results On Algebraic Topology

| Contents                             |    |
|--------------------------------------|----|
| 3 Applications On Algebraic Topology | 30 |
| Conclusion                           | 34 |
| References                           | 36 |

# List of Figures

| 1.1 | Morse Function                | 12 |
|-----|-------------------------------|----|
| 1.2 | Stable and Unstable manifolds | 13 |
| 2.1 | Figure 2.1                    | 22 |
| 2.2 | Figure 2.2                    | 23 |

### **Eigenvalues of Graphs**

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics

by

### ANJANA BENNY

Register No.CCAVMMS013



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

2023

### CERTIFICATE

This is to certify that the project entitled "Eigenvalues of Graphs" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics, is a bonafide record of work done by Ms.ANJANA BENNY (CCAVMMS013) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Dr. Seena v. Asst. Professor Department of Mathematics Christ College (Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College (Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 2 June 2023

## DECLARATION

I hereby declare that the project work entitled "**Eigenvalues of Graphs**" submitted to Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023 Anjana Benny

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Dr. Seena V, Assistant professor, Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support, and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**Eigenvalues of Graphs**".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me the necessary facilities to complete this project on time.

My project guide, Dr. Seena V, deserves a special word of thanks for her invaluable and generous help in preparing this project in LATEX.

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Anjana Benny

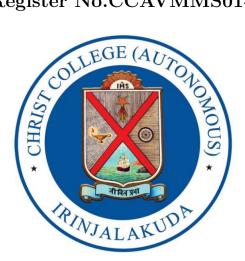
# Contents

| Li       | st of | Figures                                         | iii |
|----------|-------|-------------------------------------------------|-----|
| In       | trodu | uction                                          | 1   |
| 1        | Pre   | liminaries                                      | 3   |
|          | 1.1   | Basic Definitions, Notations, and Terminologies | 3   |
|          | 1.2   | Basic Results                                   | 6   |
| <b>2</b> | The   | Characteristic Polynomial                       | 7   |
|          | 2.1   | Eigenvalues of the Adjacency Matrix             | 7   |
|          | 2.2   | Linear Algebra of Real Symmetric Matrices       | 10  |
| 3        | Eige  | envalues and Graph Parameters                   | 15  |
|          | 3.1   | Eigenvalues Over Various Parameters             | 15  |
|          | 3.2   | Eigenvalues and Expanders                       | 20  |
| 4        | Eige  | envalues of Regular Graphs                      | 23  |
|          | 4.1   | Regular graphs                                  | 23  |
|          | 4.2   | Strongly Regular Graphs                         | 28  |
|          | 4.3   | Applications of Eigenvalues of Graphs           | 33  |

|            | Contents |    |
|------------|----------|----|
| Conclusion |          | 34 |
| References |          | 35 |

# List of Figures

| 1.1 | Graph of adjacency matrix                        | 4  |
|-----|--------------------------------------------------|----|
| 3.1 | The optimal decomposition of $C_{15} \times C_5$ | 19 |
| 4.1 | Friendship graph                                 | 32 |


## **Bilinear forms**

# Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

### ANN ROSE SHAJU PANADAN

Register No.CCAVMMS014



Department of Mathematics

Christ College (Autonomous)

Irinjalakuda 2023

## CERTIFICATE

This is to certify that the project entitled "BILINEAR FORMS" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms.ANN ROSE SHAJU PANADAN (CCAVMMS014) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

> Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

# DECLARATION

I hereby declare that the project work entitled "**BILINEAR FORMS**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of original project work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date 2 June 2023 ANN ROSE SHAJU PANADAN

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Prof.Tintumol Sunny, Head of Department, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**Bilinear forms**"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr. Seena V, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### ANN ROSE SHAJU PANADAN

# Contents

| IN       | TRO                                                      | DUCTION                                                            | 1  |
|----------|----------------------------------------------------------|--------------------------------------------------------------------|----|
| 1        | PRELIMINARIES                                            |                                                                    | 3  |
| <b>2</b> | INTRODUCTION TO BILINEAR FORMS                           |                                                                    |    |
|          | 2.1                                                      | Types of bilinear forms                                            | 8  |
|          | 2.2                                                      | Addition of bilinear forms                                         | 11 |
| 3        | OR                                                       | THOGONALITY                                                        | 14 |
|          | 3.1                                                      | Orthogonality and radical of vector spaces                         | 14 |
|          | 3.2                                                      | Bilinear subspace, Direct sum and Groups preserving bilinear forms | 19 |
| 4        | BILINEAR FORMS ON FINITE DIMENSIONAL VECTOR<br>SPACES 22 |                                                                    |    |
|          | 4.1                                                      | Matrices of bilinear forms in different ordered bases              | 25 |
|          | 4.2                                                      | Rank of a bilinear form                                            | 28 |
|          | 4.3                                                      | Symmetric bilinear forms                                           | 32 |
|          | 4.4                                                      | Diagonalization of bilinear forms                                  | 32 |
| C        | ONC                                                      | LUSION                                                             | 35 |

## **Fundamental Groups and Covering Spaces**

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics

by

#### ANUPAMA ROY

Register No.CCAVMMS015



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

2023

## CERTIFICATE

This is to certify that the project entitled "Fundamental Groups and Covering Spaces" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc. Degree programme in Mathematics, is a bonafide record of project work done by Ms. ANUPAMA ROY (CCAVMMS015) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2021-2023.

Mr. Naveen V V Assistant Professor (Ad-hoc) Department of Mathematics Christ College (Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College (Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 02 June 2023

# DECLARATION

I hereby declare that the project work entitled "Fundamental Groups and Covering Spaces" submitted to Christ College (Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of project work done by me during the period of my study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 Anupama Roy

### ACKNOWLEDGEMENT

In this happiest moment, I take this opportunity to thank the almighty God for the blessings showered upon us and help without which the completion of this project is impossible. I'm rendering my heartiest gratitude to all the people who helped and guided me.

I take this opportunity to express my sincere thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "Fundamental Groups and Covering Spaces".

I express my deepest thanks to my guide Mr. Naveen V V, Assistant Professor (Ad-hoc), Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it finds difficult to complete this work.

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and also Dr. Seena V, assistant professor, who deserves a special word of thanks for her invaluable and generous help in preparing this project in  $IAT_EX$ and all other teachers of the department for providing the necessary facilities to complete this project on time.

I want to especially thank all the faculty of the library for providing various facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### Anupama Roy

# Contents

| Li                  | st of                 | Figures                      | iii |  |  |
|---------------------|-----------------------|------------------------------|-----|--|--|
| In                  | $\operatorname{trod}$ | uction                       | 1   |  |  |
| 1                   | Preliminaries         |                              |     |  |  |
|                     | 1.1                   | Introduction                 | 4   |  |  |
| 2 Homotopy of Paths |                       |                              |     |  |  |
|                     | 2.1                   | Homotopy                     | 7   |  |  |
|                     | 2.2                   | Path Homotopy                | 8   |  |  |
|                     | 2.3                   | Composition                  | 10  |  |  |
| 3                   | The                   | e Fundamental Group          | 15  |  |  |
|                     | 3.1                   | Fundamental Group            | 15  |  |  |
|                     | 3.2                   | Simply Connected Space:      | 17  |  |  |
| 4                   | Covering Spaces       |                              |     |  |  |
| 5                   | Fun                   | damental Group of the Circle | 26  |  |  |
| C                   | Conclusion            |                              |     |  |  |

Contents

References

 $\mathbf{35}$ 

## Introduction to lie algebra

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### ANUSREE A D

#### Register No.CCAVMMS016



**D**epartment of Mathematics

Christ College (Autonomous)

Irinjalakuda

2023

## CERTIFICATE

This is to certify that the project entitled "Introduction to Lie Algebra" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Ms.ANUSREE A D (CCAVMMS016) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Dr.Shinto K G Assistant Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda Date : 02 June 2023

# DECLARATION

I hereby declare that the project work entitled "Introduction to Lie Algebra" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 ANUSREE A D

## ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Dr.Shinto K G, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "Introduction to Lie Algebra"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr.Seena V, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, deserves a special word of thanks for his invaluable and generous help in preparing this project in  $LAT_EX$ . I want to especially thank all the faculty of the library for providing various facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

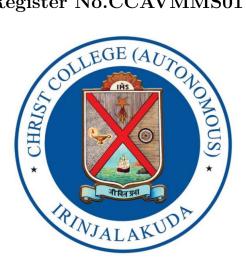
Anusree A D

# Contents

| Prelir | Preliminaries |                                   |    |
|--------|---------------|-----------------------------------|----|
| 1.1    | Introd        | luction                           | 4  |
| 1.2    | Some          | Basic Definitions                 | 5  |
| Basic  | Concep        | pts                               | 7  |
| 2.1    | Defini        | tions                             | 7  |
|        | 2.1.1         | The notion of Lie algebra         | 7  |
|        | 2.1.2         | Linear Lie Algebras               | 9  |
|        | 2.1.3         | Lie algebras of derivations       | 10 |
|        | 2.1.4         | Abstract lie algebras             | 11 |
| 2.2    | Ideals        | and homomorphisms                 | 12 |
|        | 2.2.1         | Ideals                            | 12 |
|        | 2.2.2         | Homomorphisms and Representations | 14 |
|        | 2.2.3         | Automorphisms                     | 15 |

|        | Contents                                                 |   |
|--------|----------------------------------------------------------|---|
| 2.3    | Solvable and nilpotent Lie algebra                       | 6 |
|        | 2.3.1 Solvability                                        | 6 |
|        | 2.3.2 Nilpotency                                         | 7 |
| Semi s | simple Lie algebras                                      | 9 |
| 3.1    | Killing form                                             | 9 |
|        | 3.1.1 Criterion for semisimplicity                       | 9 |
|        | 3.1.2 Simple ideals of $L$                               | 0 |
|        | 3.1.3 Inner derivations                                  | 2 |
|        | 3.1.4 Abstract Jordan decomposition                      | 3 |
| 3.2    | Complete reducibility of representations                 | 4 |
|        | 3.2.1 Modules                                            | 4 |
|        | 3.2.2 Casimir element of a representation                | 5 |
|        | 3.2.3 Preservation of Jordan decomposition               | 6 |
| The R  | coot Space Decomposition 22                              | 9 |
| 4.1    | Preliminary Results                                      | 9 |
| 4.2    | Cartan Subalgebras                                       | 1 |
| 4.3    | Subalgebras Isomorphic to $\mathfrak{sl}(2, \mathbb{C})$ | 5 |
| 4.4    | Root Strings and Eigenvalues                             | 6 |

| Applications |                       |    |  |
|--------------|-----------------------|----|--|
| 5.1          | Differential Geometry | 37 |  |
| 5.2          | Mathematical Physics  | 39 |  |
| 5.3          | Algebraic Geometry    | 41 |  |
| Conclusion   |                       |    |  |
| Refere       | References 40         |    |  |


## **Fixed Point Theorem**

# Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### ASWIN V.G

#### Register No.CCAVMMS017



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

## CERTIFICATE

This is to certify that the project entitled "Fixed Point Theorem" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by Mr.ASWIN V .G (CCAVMMS017) during the period of his study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023

Dr.Shinto K G Asst. Professor Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

# DECLARATION

I hereby declare that the project work entitled "**Fixed Point Theorem**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 Aswin V .G

## ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide Dr.Shinto K G, Assistant Professor, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from him, both in the subject and otherwise. Without his advice, support and guidance, it find difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**Fixed Point Theorem**"

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr Seena V, Assistant Professor, Department of Mathematics, deserves a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

Aswin V .G

# Contents

| In       | Introduction 1 |                                                 |    |  |  |  |
|----------|----------------|-------------------------------------------------|----|--|--|--|
| 1        | Pre            | liminaries                                      |    |  |  |  |
|          | 1.1            | Metric space                                    | 4  |  |  |  |
|          | 1.2            | Normed space                                    | 7  |  |  |  |
|          | 1.3            | Arzela-Ascoli theorem                           | 9  |  |  |  |
| <b>2</b> | Fixe           | ed Points And Banach Fixed Point Theorem        | 11 |  |  |  |
|          | 2.1            | Introduction                                    | 11 |  |  |  |
|          | 2.2            | Fixed points                                    | 11 |  |  |  |
|          | 2.3            | Banach fixed point theory                       | 14 |  |  |  |
|          | 2.4            | Picard's theorem                                | 17 |  |  |  |
| 3        | Bro            | ouwer's Fixed Point Theorem And Its Application | 20 |  |  |  |
|          | 3.1            | Brouwer's fixed point theorem                   | 21 |  |  |  |
|          | 3.2            | Perron-Frobenius theorem                        | 22 |  |  |  |
|          | 3.3            | Retractions and fixed points                    | 25 |  |  |  |
| 4        | $\mathbf{Sch}$ | auder's Fixed Point Theorem                     | 27 |  |  |  |
|          | 4.1            | Introduction                                    | 27 |  |  |  |

| 4.2    | Schauder's theorem    | . 27 |
|--------|-----------------------|------|
| 4.3    | Hammerstein equations | . 28 |
| Conclu | ision                 | 31   |
| Refere | nces                  | 32   |

# CODING THEORY

Project report submitted to Christ College (Autonomous) in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### CHRISTY DAVI

Register No. CCAVMMS018



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda 2023

## CERTIFICATE

This is to certify that the project entitled "CODING THEORY" submitted to Department of Mathematics in partial fulfilment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of the work done by Ms. CHRISTY DAVI (CCAVMMS018) during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Ms. Gifty Thomas Assistant Professor (Ad-hoc) Department of Mathematics Christ College (Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of the Department Department of Mathematics Christ College (Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 02 June 2023

# DECLARATION

I hereby declare that the project work entitled "CODING THEORY" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfilment of the requirement for the award of Master Degree of Science in Mathematics is a record of the work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 02 June 2023 CHRISTY DAVI

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. There are many individuals who have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental for making this project a success.

I express my deepest thanks to my guide, Ms. Gifty Thomas, Assistant Professor (Ad-hoc), Department of Mathematics, Christ College (Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Without her advice, support, and guidance, it would have been difficult to complete this work.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "CODING THEORY".

I mark my word of gratitude to Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me the necessary facilities to complete this project on time.

Dr. Seena V, Assistant Professor, deserves a special word of thanks for her invaluable and generous help in preparing this project in LATEX.

I want to especially thank all the faculty of the library for providing various

facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning till the end of this work.

#### CHRISTY DAVI

# Contents

| Li            | st of                         | Figures                                      | iii |
|---------------|-------------------------------|----------------------------------------------|-----|
| $\mathbf{Li}$ | st of                         | Tables                                       | iv  |
| In            | trod                          | uction                                       | 1   |
| 1             | Bas                           | ics of Coding Theory                         | 3   |
|               | 1.1                           | Some Basic Assumptions                       | 3   |
|               | 1.2                           | Correcting and Detecting Error Patterns      | 6   |
|               | 1.3                           | Information Rate                             | 8   |
|               | 1.4                           | Finding the Most Likely Codeword Transmitted | 8   |
| <b>2</b>      | 2 Maximum Likelihood Decoding |                                              | 12  |
|               | 2.1                           | Some Basic Algebra                           | 12  |
|               | 2.2                           | Weight and Distance                          | 14  |
|               | 2.3                           | CMLD and IMLD                                | 15  |
|               | 2.4                           | Distance of a Code                           | 18  |
|               | 2.5                           | Error-Detecting Codes                        | 19  |
|               | 2.6                           | Error-Correcting Codes                       | 19  |

#### Contents

| 3  | Linear Codes  |                                  |    |  |
|----|---------------|----------------------------------|----|--|
|    | 3.1           | Definition of Linear Codes       | 21 |  |
|    | 3.2           | Matrices                         | 22 |  |
|    | 3.3           | Generating Matrices and Encoding | 23 |  |
|    | 3.4           | Cosets                           | 27 |  |
|    | 3.5           | MLD for Linear Codes             | 29 |  |
| Co | onclu         | sion                             | 31 |  |
| Re | References 32 |                                  |    |  |

# List of Figures

| 1.1 | General Information Transmission System | 3 |
|-----|-----------------------------------------|---|
| 1.2 | Binary Symmetric Channel (BSC)          | 5 |

## List of Tables

| 1.1 | To find the most likely codeword transmitted | 11 |
|-----|----------------------------------------------|----|
| 2.1 | IMLD table for Example 2.3.1                 | 17 |
| 2.2 | IMLD table for Example 2.3.2                 | 18 |

## **Digital Signatures**

## Project report submitted to Christ College (Autonomous) in partial fulfillment of the requirement for the award of the M.Sc Degree programme in Mathematics

by

#### **EVELYN JOSE**

#### Register No.CCAVMMS019



**Department of Mathematics** 

Christ College (Autonomous)

Irinjalakuda

 $\boldsymbol{2023}$ 

### CERTIFICATE

This is to certify that the project entitled "**Digital Signatures**" submitted to the Department of Mathematics in partial fulfillment of the requirement for the award of the M.Sc Degree programme in Mathematics, is a bonafide record of work done by **Ms. EVELYN JOSE (CCAVMMS019)** during the period of her study in the Department of Mathematics, Christ College (Autonomous), Irinjalakuda, under my supervision and guidance during the year 2022-2023.

Ms. Merin Mathew ADHOC faculty Department of Mathematics Christ College(Autonomous) Irinjalakuda Prof. Tintumol Sunny Head of Department Department of Mathematics Christ College(Autonomous) Irinjalakuda

External Examiner :

Place : Irinjalakuda

Date : 2 June 2023

## DECLARATION

I hereby declare that the project work entitled "**Digital Signatures**" submitted to Christ College(Autonomous), Irinjalakuda in partial fulfillment of the requirement for the award of Master Degree of Science in Mathematics is a record of work done by me during the period of my study in the Department of Mathematics, Christ College(Autonomous), Irinjalakuda.

Place : Irinjalakuda Date : 2 June 2023 Evelyn Jose

### ACKNOWLEDGEMENT

First, there are no words to adequately acknowledge the wonderful grace that my Redeemer has given me. Many individuals have come together to make this project a reality. I greatly appreciate the inspiration; support and guidance of all those people who have been instrumental in making this project a success.

I express my deepest thanks to my guide Ms. Merin Mathew, ADHOC Faculty, Department of Mathematics, Christ College(Autonomous), Irinjalakuda, who guided me faithfully through this entire project. I have learned so much from her, both in the subject and otherwise. Completing this work is difficult without her advice, support, and guidance.

I take this opportunity to express my thanks to our beloved principal Fr. Dr. Jolly Andrews CMI, who gave me the golden opportunity to do this wonderful project on the topic "**Digital Signatures**".

I thank Prof. Tintumol Sunny, Head of the Department, and all other teachers of the department for providing me with the necessary facilities to complete this project on time.

Dr. Seena V desires a special word of thanks for her invaluable and generous help in preparing this project in  $LAT_EX$ .

I want to especially thank all the faculty of the library for providing various facilities for this project.

Words cannot express the love and support I have received from my parents, whose encouragement has buoyed me up from the beginning completing this work is difficult.

Evelyn Jose

## Contents

| Li       | List of Figures |             |                         |    |  |  |  |  |
|----------|-----------------|-------------|-------------------------|----|--|--|--|--|
| In       | trod            | uction      |                         | 1  |  |  |  |  |
| 1        | Pre             | eliminaries |                         |    |  |  |  |  |
|          | 1.1             | Introd      | luction                 | 4  |  |  |  |  |
|          | 1.2             | Basic       | Definitions             | 4  |  |  |  |  |
| <b>2</b> | Dig             | ital Sig    | gnature                 | 7  |  |  |  |  |
|          | 2.1             | Digita      | l Signature             | 7  |  |  |  |  |
|          | 2.2             | Proces      | SS                      | 8  |  |  |  |  |
|          |                 | 2.2.1       | Need for Keys           | 8  |  |  |  |  |
|          |                 | 2.2.2       | Signing the Digest      | 9  |  |  |  |  |
|          | 2.3             | Servic      | es                      | 10 |  |  |  |  |
|          |                 | 2.3.1       | Message Authentication  | 10 |  |  |  |  |
|          |                 | 2.3.2       | Message Integrity       | 11 |  |  |  |  |
|          |                 | 2.3.3       | Non-repudiation         | 11 |  |  |  |  |
|          |                 | 2.3.4       | Confidentiality         | 12 |  |  |  |  |
|          | 2.4             | Attacl      | ks on Digital Signature | 13 |  |  |  |  |

|   |      | 2.4.1    | Attack Types                             | 13        |
|---|------|----------|------------------------------------------|-----------|
|   |      | 2.4.2    | Forgery Types                            | 14        |
| 3 | Dig  | ital Sig | gnature Schemes                          | 15        |
|   | 3.1  | Classif  | fication of Digital Signature Schemes    | 15        |
|   |      | 3.1.1    | Algorithm                                | 16        |
|   |      | 3.1.2    | Algorithm                                | 17        |
|   | 3.2  | The D    | igital Signature Algorithm (DSA)         | 18        |
|   |      | 3.2.1    | Algorithm                                | 18        |
|   |      | 3.2.2    | Algorithm                                | 19        |
|   |      | 3.2.3    | Security of DSA                          | 20        |
|   | 3.3  | The E    | lGamal signature scheme                  | 21        |
|   |      | 3.3.1    | Algorithm                                | 21        |
|   |      | 3.3.2    | Algorithm                                | 21        |
|   |      | 3.3.3    | Security of ElGamal signature scheme     | 22        |
| 4 | Clas | ssificat | ion of Digital Signature Schemes         | <b>24</b> |
|   | 4.1  | Digita   | l signature scheme with message recovery | 24        |
|   |      | 4.1.1    | Algorithm                                | 25        |
|   |      | 4.1.2    | Algorithm                                | 25        |
|   | 4.2  | The R    | SA signature scheme                      | 26        |
|   |      | 4.2.1    | Algorithm                                | 27        |
|   |      | 4.2.2    | Algorithm                                | 28        |
|   |      | 4.2.3    | Possible attacks on RSA signatures       | 28        |
|   |      | 4.2.4    | RSA signatures in practice               | 29        |
|   |      | 4.2.5    | Security of RSA                          | 30        |
|   |      |          |                                          |           |

| Contents |
|----------|
|----------|

|   | 4.3        | The R    | abin public key signature scheme | 31 |  |
|---|------------|----------|----------------------------------|----|--|
|   |            | 4.3.1    | Algorithm                        | 31 |  |
|   |            | 4.3.2    | Algorithm                        | 31 |  |
|   |            | 4.3.3    | Security of Rabin                | 32 |  |
| 5 | Арр        | olicatio | ons                              | 34 |  |
| C | Conclusion |          |                                  |    |  |
| R | References |          |                                  |    |  |

# List of Figures

| 2.1 | Signing the digest.                        | 9  |
|-----|--------------------------------------------|----|
| 2.2 | Using a trusted center for nonrepudiation. | 12 |