ON INSURANCE DATA MODELLING USING COMPOSITE DISTRIBUTIONS

Dissertation report submitted to Christ College (Autonomous) in partial

fulfillment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ANGEL ROSE A J

Register No.CCAVMST001

Department of Statistics

Christ College (Autonomous) Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'ON INSURANCE DATA MODELLING USING COMPOSITE DISTRIBUTIONS', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ANGEL ROSE A J (CCAVMST001) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Dr.Davis Antony Mundassery Head of the Department Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the dissertation entitled 'ON IN-SURANCE DATA MODELLING USING COMPOSITE DISTRIBUTIONS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Dr.Davis Antony Mundassery, Head of the Department, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this dissertation has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

ANGEL ROSE A J

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr.Davis Antony Mundassery, Associate Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

ANGEL ROSE A J

Contents

1	Int	roduction	8
	1.1	Pareto Distribution	11
	1.2	Exponential Distribution	13
	1.3	Inverse Gamma Distribution	15
	1.4	Exponentiated Exponential Distribution	17
	1.5	Exponentiated Inverse Gamma	
		Distribution	19
2	A G tion	eneralized Family of Exponentiated Composite Distribu-	21
	tion	15	21
	2.1	Properties of Exponentiated Composite Distribution	25
		2.1.1 Moments of the Exponentiated Composite Distributions	27

	2.2	Param	neter Estimation	30
3	\mathbf{The}	e Expo	nential Pareto Distribution	33
	3.1	The E	xponential-Pareto model	33
	3.2	Expor	nentiated Exponential Pareto Distribution	37
		3.2.1	Moments of the Exponentiated Exponential Pareto Dis-	
			tribution	39
		3.2.2	Parameter Estimation	42
		3.2.3	Simulation Study:	45
4	The	e Inver	se Gamma-Pareto Distribution	47
4	The 4.1		se Gamma-Pareto Distribution	
4		The In		47
4	4.1	The In	nverse Gamma Pareto model	47
4	4.1	The In Export	nverse Gamma Pareto model	47
4	4.1	The In Export	nverse Gamma Pareto model	47 52
4	4.1	The In Export 4.2.1	Inverse Gamma Pareto model Inverse Gamma Pareto Distribution Inverse Gamma Pareto Distribution Inverse Gamma Pareto Moments of the Exponentiated Inverse Gamma Pareto Inverse Gamma Pareto model Inverse Gamma Pareto Parameter Estimation Inverse Gamma Pareto	47 52 54

List of Figures

3.1	Exponential (dashed blue line), Pareto (dotted red line) and	
	composite Exponential-Pareto (solid line) density curves for θ	
	= 10	36
3.2	The composite Exponential-Pareto density curves for $\theta = 5$	
	(dotted red line), $\theta = 10$ (solid black line) and $\theta = 20$ (dashed	
	blue line).	36
3.3	Plots of the exponentiated exp-Pareto density function, for	
	some parameter values	44
4.1	Tail comparison of the composite IG-Pareto and IG $\ . \ . \ .$.	50
4.2	Tail comparison of the composite IG-Pareto and IG	51
4.3	The composite IG-Pareto density curves for $\theta = 50$ (dotted line)	
	, $\theta{=}20(\text{dashed line})$, $\theta{=}10(\text{dot-dashed line})$ and $\theta{=}5(\text{solid line}).$	51

4.4	Plots of the exponentiated	IG	Pareto	density	function,	for	
	some parameter values						58

A STUDY ON STOCK MARKET VALUE OF TCS GROUP

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ANILA BENNY

Register No.CCAVMST002

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'A STUDY ON STOCK MARKET VALUE OF TCS GROUP', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ANILA BENNY(CCAVMST002) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2021-2023.

Geethu Gopinath Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Mundassery Course Coordinator Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled 'A STUDY ON STOCK MARKET VALUE OF TCS GROUP', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Geethu Gopinath, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

ANILA BENNY

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Geethu Gopinath , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

ANILA BENNY

Contents

1	Int	roduction	8
2	Met	thodology	14
	2.1	Time Series	14
	2.2	Stationary Process	15
		2.2.1 Weakly stationary	16
		2.2.2 Strictly stationary	16
	2.3	Auto Regressive processes (AR)	16
	2.4	Moving Average (MA) process	18
	2.5	Mixed auto regressive-moving average $\operatorname{processes}(\operatorname{ARMA})$	18
	2.6	Auto Regressive Integrated Moving Average (ARIMA) model .	19
	2.7	Auto Correlation Function(ACF)	20

	2.8	Partial Auto Correlation Function (PACF)	21
	2.9	Augmented Dickey-Fuller test	22
	2.10	Akaike Information Criterion (AIC)	22
	2.11	Normalised Bayesian Information Criterion(BIC)	24
	2.12	Residual Analysis	25
	2.13	Ljung-Box Test	25
	2.14	Forecasting	26
	2.15	ARIMA Model Fitting and Forecasting	27
3	Tim	e Series Analysis	28
3	Tim 3.1	e Series Analysis Time series plot	
3			28
3	3.1	Time series plot	28 29
3	3.1 3.2	Time series plot	28 29 32
3	3.1 3.2 3.3	Time series plot ACF and PACF plots Augmented Dickey Fuller Test	28 29 32 34
3	3.13.23.33.4	Time series plot	 28 29 32 34 35

4 Conclusion

4.1	References							•		•							44	

List of Figures

3.1	Time Series Plot of Stock market in TCS	29
3.2	ACF plot	30
3.3	PACF plot	30
3.4	Decomposition of TCS	31
3.5	Differencing plot	33
3.6	ACF plot	33
3.7	PACF plot	34
3.8	Time series plot of residuals	35
3.9	ACF plot of residuals	36
3.10	PACF plot of residuals	36
3.11	Forecast	38

STATISTICAL ANALYSIS USING MULTINOMIAL LOGISTIC REGRESSION

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

ANITTA BABY

Register No.CCAVMST003

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'STATISTICAL ANALYSIS USING MULTINOMIAL LOGISTIC REGRESSION, submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ANITTA BABY(CCAVMST003) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Sreedevi PN
Assistant Professor
Department of Statistics
Christ College (Autonomous)
Irinjalakuda
External Examiner:

Dr.Davis Antony Mundassery Head of the Department(Self financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'STATIS-TICAL ANALYSIS USING MULTINOMIAL LOGISTIC REGRESSION', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of SREEDEVI PN, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

ANITTA BABY

ACKNOWLEDGEMENT

It is my proud privilege to express my sincere gratitude and indebtedness to the people who helped me to complete the project work successfully.

I would like to express my sincere gratitude to my guide SREEDEVI PN, Assistant Professor, Department of Statistics, for providing encouragement in carrying out this project and also for the valuable assistance in the successfull completion of this project.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advices and whole hearted co-operation in the fulfillment of this project.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

ANITTA BABY

Contents

1	Int	roduction	6
	1.1	Types of Diabetes	7
	1.2	Factors	8
	1.3	Objectives	11
2	Met	thodology	12
	2.1	Multinomial Logistic Regression	13
3	Dat	a Modeling	16
	3.1	Performance Measures	19
		3.1.1 P - Value	19
		3.1.2 Coefficient Beta value	19

		3.1.3 Exponential Beta Value	20
4	Ana	lysis	21
	4.1	Normal patient v/s Prediabetic patient $\ldots \ldots \ldots \ldots$	22
	4.2	Diabetic patient v/s Prediabetic patient $\ldots \ldots \ldots$	24
	4.3	Prediction	25
5	Con	nclusion	28
	5.1	References	36

FORECASTING OF RAINFALL IN KERALA AND OUTBREAK OF DENGUE INCIDENCE

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

ASWATHY JAYARAJ

Register No.CCAVMST004

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'FORECASTING OF RAIN-FALL IN KERALA AND OUTBREAK OF DENGUE INCIDENCE' submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by ASWATHY JAYARAJ(CCAVMST004) during the period of his study in the Department of Statistics, Christ College(Autonomous) Irinjalakuda Thrissur, under my supervision and guidance during the year 2021-2023.

Jiji.M.B Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Antony Mundassery Head of the Department Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled 'FORE-CASTING OF RAINFALL IN KERALA AND OUTBREAK OF DENGUE INCIDENCE', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of JIJI M.B, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associate ship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

ASWATHY JAYARAJ

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide JIJI M.B, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

ASWATHY JAYARAJ

Contents

1	IN'	TRODUCTION	9
2	ME	THODOLOGY	15
	2.1	Time Series	16
	2.2	Stationary Time Series	17
		2.2.1 Weakly stationary	17
		2.2.2 Strictly stationary	17
	2.3	Auto Regressive processes (AR)	18
	2.4	Moving Average (MA) process	19
	2.5	Mixed autoregressive-moving average $\operatorname{processes}(\operatorname{ARMA})$	20
	2.6	Auto Regressive Integrated Moving Average (ARIMA) model.	20

2.7	Seasonal Auto Regressive Integrated Moving Average (SARIMA)				
	model	22			
2.8	Auto Correlation Function(ACF)	22			
2.9	Partial Auto Correlation Function (PACF)	23			
2.10	Forecasting	24			
2.11	Jenkins Methodology	24			
2.12	Residual Analysis	26			
2.13	Model adequacy	26			
2.14	Ljung-Box Test	27			
2.15	Akaike Information Criterion(AIC)	27			
2.16	Normalised Bayesian Information Criterion(BIC)	29			
2.17	Augmented Dickey-Fuller test	30			
2.18	Forecasting procedure	31			
	2.18.1 SARIMA Model Fitting and Forecasting	31			
DATA ANALYSIS 32					
3.1	TIME SERIES ANALYSIS	32			

		3.1.1	Time series plot	32
		3.1.2	Decomposition of Time Series	33
		3.1.3	ACF and PACF plots	34
		3.1.4	Seasonal : ACF and PACF plots	35
		3.1.5	Test For Stationarity	36
		3.1.6	Model Building	37
		3.1.7	Model Adequacy	38
		3.1.8	Forecasting using SARIMA model	41
	3.2	CORF	RELATION ANALYSIS	43
		3.2.1	Dengue and Winter Monsoon	44
		3.2.2	Dengue and Summer Monsoon	45
		3.2.3	Dengue and Monsoon	46
		3.2.4	Dengue and Postmonsoon	47
4	CO	NCLU	SION	49
	4.1	Refere	ence	51

List of Figures

3.1	Time Series Plot of Rainfall Rate	32
3.2	Decomposition of Monthly Rainfall Rate	33
3.3	ACF plot	34
3.4	PACF plot	34
3.5	Seasonal ACF plot	35
3.6	Seasonal PACF plot	35
3.7	Time Series Plot of Residuals	38
3.8	ACF plot	39
3.9	PACF plot	39
3.10	Q-Q plot	40
3.11	Histogram	40

3.12	Plot of rainfall in each seasons	43
3.13	Scatter plot of Pearson correlation :-0.60	45
3.14	Scatter plot with Pearson correlation:-0.35	46
3.15	Scatter plot with Pearson correlation : -0.53	47
3.16	Scatter plot with Pearson correlation: -0.17	48

ARTIFICIAL NEURAL NETWORK IN MACHINE LEARNING

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

HELDA EDISON

Register No.CCAVMST005

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'ARTIFICIAL NEURAL NETWORK IN MACHINE LEARNING, submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by HELDA EDISON(CCAVMST005) during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Geethu Gopinath Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Antony Mundassery Head of the Department(Self financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled 'ARTI-FICIAL NEURAL NETWORK IN MACHINE LEARNING', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of GEETHU GOPINATH, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

HELDA EDISON

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide GEETHU GOPINATH, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

HELDA EDISON

Contents

1	Int	roduct	tion	9
	1.1	Object	tive Of Study	10
2	Art	ificial]	Neural Network	11
	2.1	Neura	l Network Learning Algorithms	12
		2.1.1	Supervised Learning	13
		2.1.2	Unsupervised Learning	13
		2.1.3	Reinforced Learning	13
		2.1.4	Hebbian Learning	14
		2.1.5	Radient Decent Learning	14
		2.1.6	Competitive Learning	14
		2.1.7	Stochastic Learning	15

2.2	Differe	ent Learning Rules
2.3	Activa	tion Functions $\ldots \ldots 15$
2.4	Identi	ty functions / Linear activation function $\ldots \ldots \ldots \ldots \ldots 16$
2.5	Binary	y step function
2.6	Non-L	inear Activation Function
	2.6.1	Binary sigmoid / Logistic Activation Function 18
	2.6.2	Bipolar Sigmoid / Hyper Tangent Function 19
	2.6.3	ReLu- Rectified Linear Unit
	2.6.4	Dying ReLu
	2.6.5	Leaky ReLu
	2.6.6	Parametric ReLu function
	2.6.7	ELU-Exponential Linear unit function
2.7	Percec	otron Models $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 25$
	2.7.1	Single perceptron model
	2.7.2	Multi layer perceptron model

3 Multi-Layer neural networks

	3.1	Back Propagation Network	28
	3.2	Counter Propagation Network	29
	3.3	Bi-directional Associative Memories-BAMs	30
	3.4	Adaptive Resonance Theory(ART)	31
	3.5	Hop Field Network	33
	3.6	Self organising network-SON	33
4	Spe	cial Networks	35
	4.1	Probablistic Neural Network-PNN	35
	4.1 4.2	Probablistic Neural Network-PNN	
			36
5	4.24.3	Cascade Correlation Neural Network-CCNN	36
5	4.24.3	Cascade Correlation Neural Network-CCNN	36 38 39

List of Figures

- Basic elements of ANN
- Linear activation function
- Binary step function
- Binary sigmoid activation function
- Bipolar activation function
- ReLU activation function
- Dying ReLU activation function
- Leaky ReLU activation function
- Parametric ReLU activation function
- ELU activation function
- Count plot

- Barplot
- Heatmap
- Loss function
- Confusion matrix

Comparison Of Logistic Regression And Random Forest Models For Prediction Of Heart Attack

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

KAVYA R NAIR

Register No.CCAVMST006

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled ' Comparison Of Logistic Regression And Random Forest Models For Prediction of Heart attack', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by KAVYA R NAIR (CCAVMST006) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2021-2023.

Dr. Davis Antony Mundassery

Head of the Department

Department of Statistics (Self Financing)

Christ College (Autonomous)

Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'Comparison Of Logistic Regression And Random Forest Models For Prediction Of Heart Attack', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Dr.Davis Antony Mundassery, Head of the department, Department of Statistics (Self Financing), Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

KAVYA R NAIR

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr.DAVIS ANTONY MUNDASSERY, Head of the department, Department of Statistics(Self Financing), whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course. Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

KAVYA R NAIR

Contents

1 INTRODUCTION

	1.1	Symptoms	9
	1.2	Risk Factors For Heart Attack	10
	1.3	Types Of Heart Attack	10
	1.4	Causes Of Heart Attack	11
	1.5	Prevention	12
	1.6	Diagnosis And Treatment	12
	1.7	Objective Of The Study	13
	1.8	Software Used	14
2	ME	THODOLOGY	16
	2.1	Logistic Regression	17

	2.1.1	Types Of Logistic	2	R	eg	gr€	ess	sio	on		•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
	2.1.2	Assumptions			•	•							•			•									20
	2.1.3	Advantages		•	•	•				•	•			•		•					•		•		20
	2.1.4	Disadvantages			•	•	•			•	•		•	•	•	•		•			•	•	•		21
2.2	Rando	m Forest			•	•	•				•		•	•	•	•						•	•		21
	2.2.1	Applications				•	•			•	•		•	•	•	•	•			•	•	•	•		23
	2.2.2	Assumptions				•	•				•		•	•	•	•					•	•	•		23
	2.2.3	Advantages				•	•			•	•		•	•	•	•	•			•	•	•	•		23
	2.2.4	Disadvantages				•	•			•	•		•	•	•	•	•			•	•	•	•		24
2.3	Correla	ation Matrix				•	•			•	•		•	•	•	•					•		•		24
2.4	Confus	ion Matrix				•	•			•	•		•	•	•	•	•			•	•	•	•		25
2.5	True P	ositive (TP)				•	•			•	•		•	•	•	•					•	•	•		25
2.6	True N	legative (TN)				•	•			•	•		•	•	•	•					•	•	•		26
2.7	False F	Positive (FP)			•	•	•				•		•	•	•							•	•		26
2.8	False N	Negative (FN)			•		•				•			•	•							•	•		26
2.9	Accura	су	•		•	•	•				•		•	•	•	•		•				•	•		27
2.10	Precisi	on					•				•			•	•	•					•	•	•		27

	2.11	Recall	28
	2.12	ROC Curve	28
	2.13	Area Under The ROC Curve	28
	2.14	Violin Plot	29
3	DA	TA ANALYSIS	30
	3.1	Data Set	30
	3.2	Correlation Matrix	33
	3.3	Splitting The Entire Data	34
	3.4	Confusion Matrix	35
	3.5	Violin Plot	36
	3.6	ROC curve and corresponding AUC	37
4	CO	NCLUSION	40

List of Figures

3.1	Null Value	32
3.2	Correlation Heat Map	33
3.3	Confusion Matrix Of Random Forest Model	35
3.4	Confusion Matrix Of Logistic Regression Model	35
3.5	Violin plot of resting blood pressure	36
3.6	Violin plot of cholesterol	37
3.7	ROC Curve For Random Forest model	38
3.8	ROC Curve For Logistic Regression Model	39

BURR XII DISTRIBUTION: RELIABILITY CONTEXT

Dissertation report submitted to Christ College (Autonomous) in partial

fulfillment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

LINTA JOY

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'BURR XII DISTRIBU-TION: RELIABILITY CONTEXT', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by LINTA JOY(CCAVMST007) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Mrs.Mary Priya Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Antony Mundassery Head of the Department Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the dissertation entitled 'BURR XII DISTRIBUTION: RELIABILITY CONTEXT', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Mrs.Mary Priya, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

LINTA JOY

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Mrs.Mary Priya, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

LINTA JOY

Contents

1	Int	roduction	8
2	Bur	r XII Distribuion	10
	2.1	Definition	10
	2.2	Mean	11
	2.3	Median	13
	2.4	Mode	15
	2.5	Moment Generating Function	16
	2.6	Moments	17
	2.7	Maximum Likelihood Estimation	18

3 RELIABILITY RELATIONS

	3.1	Reliability	21
	3.2	Hazard Rate	22
	3.3	Mean Time To Failure	23
	3.4	Mean Past Lifetime	24
	3.5	Stress Strength Reliability	25
4	The	Exponentiated Burr XII Weibull Distribution	27
	4.1	Definition	29
	4.2	Moments	30
	4.3	Expansion Of Density Function	35
	4.4	Order Statistics	36
	4.5	Hazard and Reverse Hazard Functions	39
5	Fitt	ing Of Burr XII Distribution	41
6	Con	aclusion	43
	6.1	References	45

List of Figures

1.1	plots of the pdf of the Burr XII distribution	9
2.1	plots of the cdf of the Burr XII distribution $\ldots \ldots \ldots$	11
4.1	plots of the EBW distribution for selected values of the model	
	parameters	29
4.2	plot of skewness and kurtosis for selected values EBW distri-	
	bution parameter	33
4.3	plot of skewness and kurtosis for selected values EBW distri-	
	bution parameter	33
4.4	plot of skewness and kurtosis for selected values EBW distri-	
	bution parameter	34
4.5	plot of skewness and kurtosis for selected values EBW distri-	
	bution parameter	34

4.6	Graphs of the hazard of the EBW distribution for selected	
	values of the model parameter	39
5.1	pdf plot of Burr X11 distribution	42

STATISTICAL ANALYSIS ON **GLOBAL CARBON DIOXIDE EMISSION**

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

MEENU C S

Register No.CCAVMST008

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the project entitled 'STATISTICAL ANAL-YSIS ON GLOBAL CO2 EMISSION', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by MEENU C S(CCAVMST008) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Megha C M	Dr.Davis Antony Mundassery
Assistant Professor	Head of the Department (Self Financing)
Department of Statistics	Department of Statistics
Christ College (Autonomous)	Christ College (Autonomous)
Irinjalakuda	Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'STA-TISTICAL ANALYSIS 0N GLOBAL CO2 EMISSION', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Megha C M, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2022.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

 $\mathbf{MEENU}~\mathbf{C}~\mathbf{S}$

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Megha C M, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected

teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda	
Date:	

MEENU C S

Contents

1	Introduction										
	1.1 Objec	tives	9								
2	Methodol	ogy	12								
	2.0.1	Database	12								
	2.0.2	Analytical Techniques	13								
3	Data Ana	lysis	19								
	3.0.1	Time Series Plot	19								
	3.0.2	Cointegration	24								
	3.0.3	Johansen Test	24								
4	Conclusio	n	27								

4.1	Appendix	•		•	•	 •	•	•	•	•	•	•	•		•	•	•	30	
4.2	References					 •		•		•	•		•	•				35	

List of Figures

3.1	Time Series Plot of Sweden	20
3.2	Structural Breaks in Sweden	20
3.3	Time Series Plot of Germany	21
3.4	Structural Breaks in Germany	21
3.5	Time Series Plot of Finland	22
3.6	Structural Breaks in Finland	22

A MAGPIE ON BAYESIAN

Dissertation report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

ROSEMOL VARGHESE

Register No.CCAVMST009

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

CERTIFICATE

This is to certify that the dissertation entitled 'A MAGPIE ON

BAYESIAN', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by **ROSEMOL VARGH-ESE(CCAVMST009)** during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Mrs.Jiji M.B	Dr.Davis Antony Mundassery
Assistant Professor	Head of the Department
Department of Statistics	Department of Statistics
Christ College (Autonomous)	Christ College (Autonomous)
Irinjalakuda	Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the dissertation entitled 'A MAGPIE ON BAYESIAN', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Mrs.JIJI M.B, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this dissertaion has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

ROSEMOL VARGHESE

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Mrs.JIJI.M.B, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

ROSEMOL VARGHESE

Contents

1	Int	roduction	8
2	Bay	vesian Regression	14
	2.1	An introduction to Bayesian Regression	14
	2.2	Bayesian Regression	15
	2.3	Some Dependent Concepts Of Bayesian Regression	17
		2.3.1 Bayes Theorem	17
		2.3.2 Maximum likelihood Estimation(MLE)	18
		2.3.3 Maximum A Posteriori (MAP) Estimation	18
	2.4	Significance of Bayesian Regression	19
	2.5	Estimation of a basic Bayesian Regression with rstanarm pack-	
		age in R	21

		2.5.1 R code for the estimation of Bayesian Regression \ldots	21
	2.6	Advantages and disadvantages of Bayesian Regression	24
3	Bay	resian Linear Regression	26
	3.1	Bayesian Linear Regression Modelling	26
	3.2	R code for estimating Bayesian Linear Regression $\hdots \hdots $	30
4	Bay	resian Data Analysis	31
	4.1	An introduction to Bayesian Analysis	31
	4.2	Applications of Bayesian Analysis	33
	4.3	Fundamental Bayesian analysis	36
5	Cor	nclusion	39
	5.1	Appendix	40
	5.2	References	43

List of Figures

1.1	A Typical Plotting Of Linear Regression Model	12
2.1	Graph of posterior distribution	22
2.2	Comparison Between Prior and Posterior	23
2.3	Graph of Model Checking	23
4.1	A Bayesian model for the proportion of success	37
5.1	output for the estimate of linear regression	41

Objectives

• To enrich our knowledge about Bayesian regression particularly Bayesian linear regression and Bayesian analysis which has wide application in many fields using R and python as statistical tool.

CUMULATIVE SUM CONTROL CHARTS FOR CENSORED LIFE DATA

Dissertation report submitted to Christ College(Autonomous)

in partial fulfillment of the award of the Msc.Degree

programme in Statistics

by

SANTHIKRISHNA T U

Register No.CCAVMST010

Department of Statistics

Christ College(Autonomous) Irinjalakuda

CERTIFICATE

This is to certify that the project entitled **CUMULATIVE SUM CON-TROL CHARTS FOR CENSORED LIFE DATA**, submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by **SANTHIKRISHNA T U(CCAVMST010)** during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Mrs.Mary Priya Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Mundassery Head of the Department Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the project entitled 'CUMULA-TIVE SUM CONTROL CHARTS FOR CENSORED LIFE DATA', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Mrs.Mary Priya, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

SANTHIKRISHNA T U

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Mrs.Mary Priya , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

SANTHIKRISHNA T U

Contents

1	Int	roduction	8
	1.1	Quality control and control charts	8
	1.2	cumulative sum control(CUSUM) chart	11
	1.3	Life data	13
	1.4	censoring	14
	1.5	Distributions typically used to model lifetime Data	16
	1.6	Gamma Distribution and	
		its applications	18
	1.7	Weibull Distribution and its applications	21
2	\mathbf{CU}	SUM Control Charts for censored Gamma distribution	25
		2.0.1 Likelihood Ratio Statistic	25

		2.0.2 Upper and lower chart statistics	27
		2.0.3 Measures of chart performance	28
	2.1	Relevance Of Average Run Length	30
	2.2	A Typical CUSUM Chart Illustration of censored Gamma Dis-	
		tributed data	31
3	\mathbf{CU}	SUM Charts For Censored Weibull Distribution	32
	3.1	properties of CUSUM charts for detecting changes in the shape	
		parameter, when the scale parameter is fixed	34
		3.1.1 Simulation Description	34
	3.2	CUSUM Chart for a Simultaneous Shift in the scale and the	
		Shape parameters of the weibull Distribution	36
	3.3	A Typical CUSUM Chart Illustration of Censored Weibull dis-	
		tributed data	38
	3.4	Histogram plot	39
4	Con	clusion	40

List of Figures

1.1	CUSUM Chart	13
1.2	Different Censoring	16
1.3	pdf plot of Gamma distribution	20
1.4	pdf of Weibull Distribution	24
3.1	cusum chart of simulated censored weibull lifetimes \ldots .	38
3.2	Histogram plot of lifetimes	39

Objectives

To reinforce our knowledge on Statistical Quality Control by making use of distributions and applying them to real life scenarios.

To enhance our knowledge on weibull distribution as a characteristic life distibution and gamma distribution that has wide application in real life as a pulse.

EFFECT OF COVID-19 ON INDIAN AUTO SALES USING TIME SERIES ANALYSIS

Project report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

SHAHANA V M

Register No.CCAVMST011

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

2023

CERTIFICATE

This is to certify that the project entitled 'EFFECT OF COVID-19 ON INDIAN AUTO SALES USING TIME SERIES ANALYSIS', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by SHAHANA V M(CCAVMST011) during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2021-2023.

Megha C MDr.Assistant ProfessorConDepartment of StatisticsDepChrist College (Autonomous)ChristIrinjalakudaIrin

Dr.Davis Mundassery Course Coordinator Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the project entitled 'EFFECT OF COVID-19 ON INDIAN AUTO SALES USING TIMESERIES ANAL-YSIS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidance and Supervision of Megha V M, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

SHAHANA V M

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide MEGHA C M , Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

SHAHANA V M

Contents

1	Int	roduction	8
2	Met	thodology	13
	2.1	Time Series	13
	2.2	Stationary Process	14
		2.2.1 Weakly stationary	14
		2.2.2 Strictly stationary	15
	2.3	Auto Regressive processes (AR)	15
	2.4	Moving Average (MA) process	16
	2.5	Mixed autoregressive-moving average $\operatorname{processes}(\operatorname{ARMA})$	17
	2.6	Auto Regressive Integrated Moving Average (ARIMA) model .	18
	2.7	Auto Correlation Function(ACF)	19

	2.8	Partial Auto Correlation Function (PACF)	20
	2.9	Forecasting	21
	2.10	Akaike Information Criterion (AIC)	21
	2.11	Normalised Bayesian Information Criterion (BIC) $\ \ldots \ \ldots$	22
	2.12	Multiple Linear Regression Analysis	23
3	Tim	e Series Analysis	25
	3.1	Time Series Plot	26
	3.2	ACF and PACF plots	26
	3.3	Autocorrelation Test	27
	3.4	Unit Root Test	28
	3.5	KPSS Test	28
		3.5.1 KPSS Test in R Software	29
	3.6	ARIMA Modeling in R	29
	3.7	Forecasting in R	31
	3.8	Multiple Linear Regression	35
	3.9	Multiple Linear Regression in R	35

4 Conclusion

4.1	References	•			•	•		•	•	•		•				•			39	

List of Figures

3.1	Time Series Plot	26
3.2	Autocorrelation of the sequence	26
3.3	Partial ACF graph of the sequence	27
3.4	KPSS Test in R	29
3.5	data converted to Time Series	29
3.6	AIC and BIC of ARIMA	30
3.7	Forecast of Sales	32
3.8	Plot of Forecast	33
3.9	MAPE Test in R	33
3.10	Model fitting in R	36

STUDY ON MENTAL HEALTH OF BUSINESSMEN OR ENTREPRENEURS DURING COVID-19 PANDEMIC IN KERALA

Project report submitted to Christ College (Autonomous) in partial fulfilment for the award of the M.Sc. Degree programme in Statistics

> by SHEETAL ANNA SABU Register No. CCAVMST012

Department of Statistics Christ College (Autonomous) Irinjalakuda 2023

CERTIFICATE

This is to certify that the project entitled 'STUDY ON MENTAL HEALTH OF BUSSINESSMEN OR ENTREPRENEURS DURING COVID-19 PANDEMIC IN KERALA', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by SHEETAL ANNA SABU (CCAVMST012) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023

Ms.Kripa PJ Assistant Professor Christ College (Autonomous) Irinjalakuda Dr. Davis Antony Mundassery Head of the Department Statistics (self finacing) Christ College (Autonomous) Irinjalakuda

External Examiner:

Place: Irinjalakuda Date:18/07/23

DECLARATION

I hereby declare that the matter embodied in the project entitled 'STUDY ON MENTAL HEALTH OF BUSINESSMEN OR ENTREPRENEURS DURING COVID-19 PANDEMIC IN KERALA', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Ms.Kripa PJ, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023. I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda Date:18/07/23

SHEETAL ANNA SABU

ACKNOWLEDGEMENT

This project would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study. First, I would like to express my deepest gratitude to my Guide Ms.Kripa PJ, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, for her generous help, constructive criticism, scholarly guidance, valuable supervision and encouragement throughout the preparation of this project, without which this project would not have been materialized. I would like to give my sincere thanks to my teachers for the inspiration, encouragement and technical help they bestowed upon me. I am indebted to the faculty of the department for sharing with me their knowledge base and for giving me a better perspective of the subject and for providing the necessary facilities during the span of my study.

My sincere thanks are also due to Librarian and non-teaching staff of the Christ college (Autonomous) Irinjalakuda for their help and co-operations. Also, I register my heartful thanks to my classmates for the co-operation and warmth I could enjoy from them. Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:18/07/23

SHEETAL ANNA SABU

Contents

1	INT	RODUCTION	7													
	1.1	Introduction	7													
	1.2	Origin And Terminology	9													
	1.3	Statistical Test Used For Analysis														
	1.4	Statistical Software Used For The Study														
	1.5	Objectives Of The Study														
	1.6	Hypothesis Of The Study	15													
2	DA	TA ANALYSIS	16													
	2.1	Reliability Item Analysis	16													
		2.1.1 Stress Scale Analysis	17													
		2.1.2 Anxiety Scale Analysis	17													
		2.1.3 Depression Scale Analysis	18													
		2.1.4 Resilience Scale Analysis	18													
3	DA	TA VISUALIZATION 2	20													
	3.1	Introduction	20													
		3.1.1 Data Visualization of Stress	21													
		3.1.2 Data Visualization of Anxiety	22													
		3.1.3 Data Visualization of Depression	23													

		3.1.4	Data Visualization of Resilience	24
4	\mathbf{AN}	OVA		25
		4.0.1	Introduction	25
	4.1	Hypot	hesis	26
		4.1.1	Test Statistic	26
	4.2	Analys	sis of the Data	27
5	FAC	CTOR	ANAYSIS	32
	5.1	Introd	uction	32
		5.1.1	Types of Factor Analysis:	33
		5.1.2	Types of Factoring	33
	5.2	Factor	Analysis in Mental health Factors	35
		5.2.1	Communalities	37
		5.2.2	Total Variance Explained	39
		5.2.3	Scree Plot	39
		5.2.4	Rotated Component Matrix	40
		5.2.5	Factors	41
6	CO	NCLU	SIONS	43
7	BIE	BILOG	RAPHY	46
8	AP	PEND	IX	47

Chapter 1

INTRODUCTION

1.1 Introduction

Kerala is a state on the Malabar coast of India. Which is famous for its culture, traditions and also for its economy. Kerala was a model for high human development at low incomes. But in recent years the income levels also have risen. Kerala is gradually shifting from an agrarian economy to a market economy. And the economy of Kerala is the 9th largest in India, with an annual gross state production of rs.9.78 lakh crore in 2020-2021. Small scale businesses in Kerala plays a significant role in contributing to the burgeoning economy of Kerala.

The pandemic created a complex and chaotic business environment. the impact of the outbreak of covid-19 has left the entrepreneur's on edge in Kerala. The pandemic has severely affected human life cycle, in an enormous way. The outbreak of Covid-19 has created the nationwide lockdown which lead to serious problems to multiple sectors of economy.

ON GENERATING DISCRETE MODELS OF CONTINUOUS DISTRIBUTIONS

Project report submitted to Christ College (Autonomous) in partial fulfilment for the award of the M.Sc. Degree programme in Statistics

> by SONA ANS REJI Register No. CCAVMST013

Department of Statistics Christ College (Autonomous) Irinjalakuda 2023

CERTIFICATE

This is to certify that the project entitled "ON GENERATING DISCRETE MODELS OF CONTINUOUS DISTRIBUTIONS", submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by SONA ANS REJI (CCAVMST013) during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

> Dr. Davis Antony Mundassery Head of the Department(Self Financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place : Irinjalakuda Date :20/07/2023

DECLARATION

I hereby declare that the matter embodied in the project entitled ' ON GENERATING DISCRETE MODELS OF CONTINUOUS DISTRIBUTIONS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this project has been composed by me under the Guidence and Supervision of Dr.Davis Antony Mundassery, Head of the Department(Self Financing), Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:20/07/2023

SONA ANS REJI

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to the following individuals and organizations for their invaluable contributions to the completion of this dissertation:

First and foremost, I am profoundly grateful to my supervisor,

Dr. Davis Antony Mundassery, for his exceptional guidance, unwavering support, and valuable insights throughout the entire research process. His expertise, patience, and encouragement have been instrumental in shaping this dissertation.

I would like to give my sincere thanks to my teachers for the inspiration, encouragement and technical help they bestowed upon me. I am indebted to the faculty of the department for sharing with me their knowledge base and for giving me a better perspective of the subject and for providing the necessary facilities during the span of my study.

My sincere thanks to Librarian and non-teaching staff of the Christ college (Autonomous) Irinjalakuda for their help and co-operations. Also, I would also like to thank my friends and colleagues for their encouragement and support during this period. Their words of encouragement, stimulating discussions, and willingness to lend a helping hand have been invaluable. Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:20/07/2023

SONA ANS REJI

Contents

1 INTRODUCTION

2	DIS	SCRET	'E FAMILY OF DISTRIBUTIONS:	
	Met	thodol	ogy	11
	2.1	Distril	oution function	14
	2.2	Hazaro	d rate	15
	2.3	Revers	sed hazard rate	15
	2.4	Second	d rate of failure	16
	2.5	Proba	bility generating function, Moments and Quantiles	16
3	GE	NERA	TING SPECIAL MODELS	19
	3.1	Discre	te Exponential Distribution	19
		3.1.1	Probability mass function	19
		3.1.2	Distribution and Survival function	22
		3.1.3	Hazard rates	22
		3.1.4	PGF, Moments	23
	3.2	Discre	te Uniform Distribution	23
		3.2.1	Probability Mass Function	23
		3.2.2	Distribution and Survival Function	26
		3.2.3	Hazard rates	26

9

	3.2.4	PGF, Moments	27
3.3	Discre	te Rayleigh Distribution	27
	3.3.1	Probability Mass Function	27
	3.3.2	Distribution and Survival Function	30
	3.3.3	Hazard rates	30
	3.3.4	PGF , Moments	30
3.4	Discre	te Half Logistic Distribution	31
	3.4.1	Probability Mass Function	31
	3.4.2	Distribution and Survival Function	34
	3.4.3	Hazard rates	34
	3.4.4	PGF , Moments	35
3.5	Discre	te Lindley Distribution	36
	3.5.1	Probability Mass Function	36
	3.5.2	Distribution and Survival Function	38
	3.5.3	Hazard rates	38
	3.5.4	PGF , Moments	39
3.6	Discre	te Pareto Distribution	39
	3.6.1	Probability Mass Function	40
	3.6.2	Distribution and Survival Function	42
	3.6.3	Hazard rates	42
	3.6.4	PGF , Moments	43
3.7	Discre	te Burr Distribution	44
	3.7.1	Probability Mass Function	44
	3.7.2	Distribution and Survival Function	46
	3.7.3	Hazard rates	46
	3.7.4	PGF , Moments	46

4	CO	CONCLUSION 4.1 References														48												
	4.1	References																										49

List of Figures

3.1	The pmf of $DE(\alpha, \theta, p)$ for different values of α, θ, p	21
3.2	The pmf of $DU(\alpha, \theta, a)$ for different values of α, θ, a	25
3.3	The pmf of $DR(\alpha, \theta, p)$ for different values of α, θ, p	29
3.4	The pmf of DHL(α, θ, p) for different values of α, θ, p	33
3.5	The pmf of $DL(\alpha, \theta, a)$ for different values of α, θ, a	37
3.6	The pmf of $DP(\alpha, \theta, a, k)$ for different values of α, θ, a, k	41
3.7	The pmf of $DB(\alpha, \theta, c, k)$ for different values of α, θ, c, k	45

ON A NEW FLEXIBLE GENERALIZED FAMILY OF DISTRIBUTIONS

Dissertation report submitted to Christ College (Autonomous) in partial

fulfilment of the requirement for the award of M.Sc. Degree

programme in Statistics

by

SONA K P

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

2023

CERTIFICATE

This is to certify that the Dissertation entitled **'ON A NEW FLEXI-BLE GENERALIZED FAMILY OF DISTRIBUTIONS'**, submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by **SONA K P (CCAVMST014)** during the period of her study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2021-2023.

Dr.Davis Antony Mundassery Head of the Department Department of Statistics (Self Financing) Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

DECLARATION

I hereby declare that the matter embodied in the Dissertation entitled 'ON A NEW FLEXIBLE GENERALIZED FAMILY OF DISTRIBUTIONS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this dissertation has been composed by me under the Guidance and Supervision of Dr.Davis Antony Mundassery, Head of the Department, Department of Statistics (Self Financing), Christ College (Autonomous) Irinjalakuda, during 2021-2023.

I also declare that this Dissertation has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

SONA K P

ACKNOWLEDGEMENT

This Dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide Dr.Davis Antony Mundassery, Head of the Department, Department of Statistics (Self Financing), whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected

teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda Date:

SONA K P

Contents

1	INTRODUCTION													
	1.1	Kumaraswamy Distribution	9											
	1.2	Exponential Distribution	11											
	1.3	Weibull Distribution	13											
	1.4	Burr type XII Distribution	15											
	1.5	Pareto Distribution	17											
2	2 NEW FLEXIBLE GENERALIZED FAMILY													
	2.1	The Proposed Flexible G-Family	19											
	2.2	New Flexible Weibull Model	21											
	2.3	New Flexible BurrXII Model	22											
	2.4	New Flexible Pareto Model	24											

3	NE	EW FLEXIBLE KUMARASWAMY DISTRIBUTION 2													
	3.1	Order Statistics													
		3.1.1 r th Order Statistics $X_{(r)}$													
		3.1.2 Probability Density Function of $X_{(r)}$	29												
	3.2	Parameter Estimation	30												
	3.3	Simulation Study	32												
4	NE	W FLEXIBLE EXPONENTIAL DISTRIBUTION	35												
	4.1	Order Statistics	37												
		4.1.1 \mathbf{r}^{th} Order Statistics $\mathbf{X}_{(r)}$	37												
		4.1.2 Probability Density Function of $X_{(r)}$	38												
	4.2	Parameter Estimation	39												
	4.3	Simulation Study	40												
5	CO	NCLUSION	43												
6	BIBLIOGRAPHY														

CLUSTER ANALYSIS

Dissertation report submitted to Christ College (Autonomous) in partial

fulfilment of the requirment for the award of M.Sc. Degree

programme in Statistics

by

SREYA SASI

Department of Statistics

Christ College (Autonomous)

Irinjalakuda

2023

CERTIFICATE

This is to certify that the Dissertation entitled 'CLUSTER ANALY-SIS', submitted to the Department of Statistics in Partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is a bonafied record of original research work done by SREYA SASI(CCAVMST015) during the period of his study in the Department of Statistics, Christ College (Autonomous) Irinjalakuda, Thrissur, under my supervision and guidance during the year 2022-2023.

Sreedevi P N Assistant Professor Department of Statistics Christ College (Autonomous) Irinjalakuda

External Examiner:

Place:

Date:

Dr.Davis Antony Mundassery Head of the Department(Self financing) Department of Statistics Christ College (Autonomous) Irinjalakuda

DECLARATION

I hereby declare that the matter embodied in the Dissertation entitled 'CLUS-TER ANALYSIS', submitted to the Department of Statistics in partial fulfillment of the requirements for the award of the Masters Degree in Statistics, is the result of my studies and this Dissertation has been composed by me under the Guidence and Supervision of SREEDEVI P N, Assistant Professor, Department of Statistics, Christ College (Autonomous) Irinjalakuda, during 2022-2023.

I also declare that this project has not been previously formed the basis for the award of any degree, diploma, associateship, fellowship etc. of any other university or institution.

Irinjalakuda

Date:

SREYA SASI

ACKNOWLEDGEMENT

This Dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of the study.

I would like to express my deepest gratitude to my guide SREEDEVI P N, Assistant Professor, Department of Statistics, whose guidance has been of immense help in successfully completing this report.

With great pleasure, I take this opportunity to express my sincere gratitude to my respected teachers, friends and non teaching staff of Department of Statistics, Christ College (Autonomous) Irinjalakuda, for their valuable advice and encouragement throughout my course.

Last but not least, I am indebted to my parents for their unconditional love and support.

Irinjalakuda

Date:

SREYA SASI

Contents

1	Introduction														
2	2 Cluster Analysis														
	2.1	Exan	nples of the use of clustering	15											
		2.1.1	Market research	15											
		2.1.2	Psychiatry	16											
		2.1.3	Machine Learning	17											
	2.2	Differ	rent types of clusters	19											
		2.2.1	well separated clusters	19											
		2.2.2	prototype based	20											
		2.2.3	Density based	21											
		2.2.4	Shared property based	22											

		2.2.5	Graph based	22												
3	Hie	Hierarchical Clustering														
	3.1	Agglo	merative methods	24												
		3.1.1	Nearest neighbour method (single linkage method) $\$	25												
		3.1.2	1.2 Furthest neighbour method (complete linkage method) 2													
		3.1.3 Average (between groups) linkage method (sometimes														
			referred to as UPGMA)	27												
		3.1.4	Centroid method	27												
		3.1.5	Ward's method	28												
	3.2	Dend	ogram	29												
	3.3	Divisive methods														
4	Noi	n Hiera	archical Clustering	33												
	4.1	Partit	ioning	33												
	4.2	k-mea	ns Clustering	34												
5	Dat	a Ana	lysis	36												

6 Conclusion

6.1	References		•		•					•		•					•	47	

 $\mathbf{45}$