| Programme | B. Sc. Mathematics Honours |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Title | MATRIX THEORY |  |  |  |
| Course Code | MAT1MN105 |  |  |  |
| Type of Course | Minor |  |  |  |
| Semester | I |  |  |  |
| Academic Level | 100-199 |  |  |  |
| Course Details | Credit | Lecture/Tutorial per week | Practical <br> per week | Total Hours |
|  | 4 | 4 | - | 60 |
| Pre-requisites | Higher Secondary Algebra |  |  |  |
| Course Summary | This course provides a comprehensive introduction to linear algebra, focusing on systems of linear equations, matrix algebra, determinants, and Euclidean vector spaces. Through a blend of theoretical concepts and practical applications, students will develop a strong foundation in linear algebra techniques and their uses in various fields. |  |  |  |

## Course Outcomes (CO):

| CO | CO Statement | Cognitive Level* | Knowledge Category\# | Evaluation <br> Tools used |
| :---: | :---: | :---: | :---: | :---: |
| CO1 | Understand the fundamental operations and concepts of systems of linear equations, including Gaussian elimination and elementary row operations, leading to an understanding of matrix algebra | U | C | Internal <br> Exam/Assignme <br> nt/ Seminar/ <br> Viva / End Sem <br> Exam |
| CO 2 | Apply the properties of determinants to evaluate them using cofactor expansions and row reduction techniques, and comprehend the relationships between matrices and determinants. | Ap | P | Internal Exam/ <br> Assignment/ <br> Seminar/ Viva/ <br> End Sem Exam |
| CO3 | Explore the geometry and properties of Euclidean vector spaces, including norms, dot products, distances, orthogonality, and the cross product. | An | C | Internal Exam/ <br> Assignment/ <br> Seminar/ Viva/ <br> End Sem Exam |
| * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) <br> - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) |  |  |  |  |

Detailed Syllabus:


## References:

1. Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zill, Jones \& Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of $\mathbf{1 5}$ marks from each module.

Mapping of COs with PSOs and POs:

|  | PSO5 | PSO6 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 2 |
| CO 2 | 3 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 2 |
| CO 3 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 1 | 2 |

## Correlation Levels:

| Level | Correlation |
| :--- | :--- |
| - | Nil |
| 1 | Slightly / Low |
| 2 | Moderate / Medium |
| 3 | Substantial / High |

## Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70\%)


## Mapping of COs to Assessment Rubrics:

|  | Internal Exam | Assignment | Seminar | Viva | End Semester Examinations |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CO 1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| CO 2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| CO 3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

