Programme	B. Sc. Mathematics Honours						
Course Code	MAT1MN103						
Course Title	BASIC CALC	ULUS					
Type of Course	Minor						
Semester	Ι						
Academic	100 – 199						
Level							
Course Details	Credit Lecture/Tutorial Practicum Total Hours						
	per week per week						
	4	4	-	60			
Pre-requisites	Basic Set Theor	ry including functions and t	heir algebraic o	perations.			
Course	1	vides a comprehensive expl					
Summary	11	begins with fundamental co	1 0 1				
	inverse functions, laying the groundwork for calculus. Modules II and III delve						
		into differentiation techniques, including product and quotient rules, implicit					
	differentiation, derivatives of inverse functions, and applications like extrema,						
	```	theorems (such as Rolle's and Mean Value Theorems), and curve sketching.					
	Module IV explores integral calculus, covering the fundamental theorem of						
		rical integration techniques					
	Simpson's Rule	), and introduces hyperbolic	c functions and	their derivatives and			
	integrals.						

## **Course Outcomes (CO):**

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Apply graphical analysis skills to mathematical models:	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Evaluate and solve calculus problems involving limits and continuity	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Apply differentiation and integration techniques to analyse functions:	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
# - Factu	<ul> <li>* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)</li> <li># - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive</li> </ul>						
Knowled	Knowledge (M)						

# **Detailed Syllabus:**

Text Book		Calculus: Early Transcendental Functions (6edn), Ron Larson and Cengage Learning ISBN-13: 978-1-285-77477-0.	Bruce E	dwards
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Foundations of Calculus: Graphs, Functions, and Limits		
	1	A quick review of sections 1.1 and 1.2 (not for external exam)		
		Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions -		
		Inverse Functions, Existence of an Inverse Function		
	3	Section 1.6: Exponential and Logarithmic Functions -		
		Exponential Functions, The Number e, The Natural Logarithmic		
Ι		Function		
1	4	Section 2.2: Finding Limits Graphically and Numerically -	13	
		An Introduction to Limits, Limits That Fail to Exist, A Formal		Min 15
		Definition of Limit (examples are optional topics)		
	5	Section 2.3: Evaluating Limits Analytically -		
		Properties of Limits, A Strategy for Finding Limits,		
	6	Section 2.3: Evaluating Limits Analytically -		
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
	7	Continuity, Derivatives, and Differentiation Rules Section 2.4: Continuity and One-Sided Limits -		
		Continuity at a Point and on an Open Interval, Properties of		
		Continuity at a Fond and on an Open Interval, Fopences of Continuity, The Intermediate Value Theorem.		
	8	Section 3.1: The Derivative and the Tangent Line Problem -		
	0	The Derivative of a Function, Differentiability and Continuity		
	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The		
	-	Constant Rule, The Power Rule, The Constant Multiple Rule, The		
II		Sum and Difference Rules	12	
	10	Section 3.2 : Basic Differentiation Rules – rest of the section.		Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order		
		Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
		plications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		NT 14
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
	15	Finding Extrema on a Closed Interval Section 4.2: Rolle's Theorem and The Mean Value Theorem -		
III	13	Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First	14	
		Derivative Test -		
		Increasing and Decreasing Functions, The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

		Concavity, Points of Inflection, The Second Derivative Test		1			
-							
	18						
		Analyzing the Graph of a Function					
		Integral Calculus: Fundamental Theorems and Applications"					
	19						
		Antiderivatives, Basic Integration Rules, Initial Conditions and					
		Particular Solutions.					
	20	20 Section 5.3: Reimann Sums and Definite Integrals – Reimann					
TX7							
IV	21	Sums, Definite Integrals, Properties of Definite Integrals. Section 5.4: The Fundamental Theorem of Calculus -	11	Min 15			
		The Fundamental Theorem of Calculus, The Mean Value Theorem					
	22						
		Section 5.4: The Fundamental Theorem of Calculus - Average Value of a Function, The Second Fundamental Theorem					
		of Calculus, Net Change Theorem					
		Open Ended					
	One S						
<b>X</b> 7	Deriv						
V	Asyn	12					
	Нуре						
	51						
Referen	ces:		1				
1	. Calc	ulus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.					
	2. Calculus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney, Pearson						
	Publications						
3	. Calc	ulus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India					
	4. Calculus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.						
	5. Calculus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright						
L							

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.,

### Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

### **Correlation Levels:**

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

#### **Assessment Rubrics:**

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

## Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
CO 2	√	$\checkmark$	√	~	~
CO 3	~	✓	~	~	$\checkmark$