Programme	B.Sc Mathematics Honours				
Course Code	MAT1MN104				
Course Title	MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS				
Type of Course	Minor	Practical	Total Hours		
Semester	I				
Academic Level	$100-199$	Lecture/Tutorial	per week		

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category\#	Evaluation Tools used
CO1	Analyse propositional logic and equivalences	An	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply set theory and operations	Ap	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Implement functions, matrices, and combinatorics	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) \# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.				
Module	Unit	Content	$\begin{gathered} \text { Hrs } \\ (48 \\ +12) \end{gathered}$	Ext. Marks (70)
I	Mathematical Logic		15	Min. 15
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)		
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
II		Set Theory	12	
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		Min. 15
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		
	9	2.2 Operations with Sets - up to and including example 2.21.		
	10	2.2 Operations with Sets - Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III		Functions and Matrices		

	12	3.1. The Concept of Functions - up to and including example 3.2	10	Min. 15
	13	3.1. The Concept of Functions - Piecewise definition, sum and product (Example 3.7 is optional).		
	14	3.2 Special Functions - up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).		
	15	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).		
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV	Combinatorics and Discrete Probability		11	Min. 15
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)		
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)		
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)		
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
V		Open Ended	12	
		Basic calculus concepts such as limits, continuity, differentia integration. Relations and Digraphs, Conditional Probability, theorem of Probability, Dependent and Independent Events, Distributions, Correlation and Regression, Bisection Method Method, Gauss-Jordan Method.	ion Mul rob	lication lity -Falsie

References:

1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70\%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

