17P270

SECOND SEMESTER M.Sc. DEGRE (CUCSS -

(Computer Sc CC17P CSS2 E05 - NUMERICAL AN

(2017 Admission

Time: Three Hours

- I. Answer *all* questions.
 - 1. Explain random variables with suitable examples.
 - 2. What do you mean by unbalanced transportation problem? How we can convert it in to a
 - balanced one? 3. Explain the primal-dual relationship in Operation research.
 - 4. Write statistical definition of probability.
 - 5. Explain absolute and relative errors.
 - 6. Compare mass function and density function in probability.
 - 7. Find the dual of the following LPP Maximize $z = 2x_1 + x_2$ Subject to:
 - $x_1 + x_2 \le 4$
 - $x_1 + x_2 \le 2$
 - $x_1 \ge 0, x_2 \ge 0$
 - 8. Define Slack and Surplus variables.
 - 9. Explain the convergence of bisection method.
 - 10. What do you mean by blunders in arithmetic?
 - 11. Derive the false position formula using the equation of line joining two points.
 - 12. What do you mean by unbalanced assignment problem? Explain with suitable example.
- II. Answer any six questions.
 - 13. What are the different iterative methods to find the solution of non linear equations? Explain any one method.

estimate $x_1 = 4$ and $x_2 = 2$.

15. Explain addition theorem on probability for two events. 16. Explain Simpson's 1/3 rule.

3)	Name
	Reg. No
E EXAMINA	TION, MAY 2018
PG)	
cience)	
ID STATIST	ICAL METHODS
s: Regular)	
	Maximum: 36 Weightage

 $(12 \times 1 = 12 \text{ Weightage})$

14. Use Secant Method to estimate the root of the equation $x^2 - 4x - 10 = 0$, with initial

Turn Over

17. Luminous lamps have three factories - F₁, F₂, and F₃ with production capacity 30, 50, and 20 units per week respectively. These units are to be shipped to four warehouses W_1 , W_2 , W_3 , and W₄ with requirement of 20, 40, 30, and 10 units per week respectively. The transportation costs (in Rs.) per unit between factories and warehouses are given below.

Factory	Warehouse				Supply
	W ₁	W ₂	W ₃	W4	
F ₁	1	2	1	4	30
F ₂	3	3	2	1	50
F ₃	4	2	5	9	20
Demand	20	40	30	10	

Find an initial basic feasible solution of the given transportation problem using North-West

Corner rule.

18. Let X be a continuous random variable with the following PDF

$$F_{x}(x) = \begin{cases} ce^{-x} & x \ge 0\\ 0, otherwise \end{cases}$$
 where c is a positive constant. Find the value of c?

19. Solve the following LPP using graphical method

Maximize $Z = X_1 + 1.5X_2$ Subject to: $2X_1 + 2X_2 < 16$

$$\begin{aligned} X_1 + 2X_2 &\leq 12 \\ 4X_1 + 2X_2 &\leq 28 \\ X_1, X_2 &\geq 0 \end{aligned}$$

20. Construct backward and forward difference table for the following

Х	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

21. Solve the linear system by Gauss elimination method.

$$y + z = 2$$
$$2x + 3z = 5$$
$$x + y + z = 3$$

 $(6 \times 2 = 12 \text{ Weightage})$

- 22. Find a root of the equation $x^2 4x 10 = 0$ using bisection method.
- data and interpolate the value of the function at x = 0.0045.

x			0.002			
y	1.121	1.123	1.1255	1.127	1.128	1.1285

24. Compare Gauss Elimination and Gauss Jordan methods.

25. Find the root of the equation $f(x) = x^2 - 3x + 2$ in the vicinity of x = 0 using

Newton Raphson Method correct to 4-decimal places.

26. Compute f(0.3) for the data using Lagrange's interpolation formula.

ĺ	X	0	1	3	4
	f	1	3	49	129

27. Solve the following using Big-M method

Minimize $z = 2x_1 + 3x_2$

Subject to

 $0.5 x_1 + 0.25 x_2 \le 4$ $x_1 + 3 x_2 \ge 20$ $x_1 + x_2 = 10$ $x_1, x_2 \ge 0$

(3)

23. Obtain the Newton's forward interpolating polynomial, $P_5(x)$ for the following tabular

7
813

 $(3 \times 4 = 12 \text{ Weightage})$