(Pages: 2)

Name	
Reg. No	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018

(CUCSS - PG)

(Computer Science)

CC17P CSS2 C02 - OPERATING SYSTEM CONCEPTS

(2017 Admissions: Regular)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Differentiate between mode switch and process switch.
- 2. Explain the role of middleware.
- 3. Define different types of granularities.
- 4. Distinguish between physical and logical address space.
- 5. List the requirement for mutual exclusion.
- 6. Give the deadlock recovery strategy.
- 7. Explain thrashing.
- 8. Define different states of the thread.
- 9. Give the advantages of remote procedure call.
- 10. Define PCB.
- 11. Explain necessary conditions for occurring deadlock.
- 12. Define multithreading.

 $(12 \times 1 = 12 \text{ Weightage})$

Part B

Answer any *six* questions. Each question carries 2 weightage.

- 13. Define overlays with suitable example.
- 14. Briefly explain five state process model.
- 15. Explain any two CPU scheduling algorithms.
- 16. Discuss client server architecture.
- 17. Explain monitors.
- 18. Distinguish between counting and binary semaphore.

17P267

- 19. What is meant by priority inversion?
- 20. Discuss about paging mechanism.
- 21. Explain the reason for process creation.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *three* questions. Each question carries 4 weightage.

22. Consider the following snapshot of system:

	All	loca	tion_	<u>Max</u>			<u>Available</u>			
	А	В	С	А	В	С	А	В	С	
P0	0	1	0	7	5	3	3	3	2	
P1	2	0	0	3	2	2				
P2	3	0	2	9	0	2				
P3	2	1	1	2	2	2				
P4	0	0	2	4	3	3				

Answer the following using the Banker's algorithm:

- (a) What is the content of the matrix *Need*?
- (b) Is the system in a safe state?
- (c) If a request from process P1 arrives for (1, 0, 2), can the request be granted immediately?
- 23. Explain distributed message passing in a single system.
- 24. (a) What is the need of process termination?
 - (b) What is real time operating system?
- 25. Explain any four page replacement technique with suitable example.
- 26. How we can prevent deadlock?
- 27. Explain real time scheduling.

 $(3 \times 4 = 12 \text{ Weightage})$