\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018
 (Supplementary/Improvement)

(CUCSS - PG)

CC15P MT2 C10 - NUMBER THEORY

(Mathematics)
(2015 \& 2016 Admissions)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. State the relation between φ and μ.
2. Define a multiplicative function. Give an arithmetical function which is not multiplicative.
3. If the integer n has r distinct odd prime factors, then prove that $2^{r} \mid \varphi(n)$.
4. Find $\varphi^{-1}(12)$.
5. Define big oh notation and show that $\frac{x-[x]}{x}=O\left(\frac{1}{x}\right)$.
6. Verify that 50 ! terminates in 12 zeros.
7. Find $\pi(14)$.
8. Solve the linear congruence $5 x \equiv 2(\bmod 26)$.
9. Show that $n^{7}-n$ is divisible by 42 .
10. Determine the quadratic residues and non residues modulo 11.
11. State quadratic reciprocity law for Legendre symbol and evaluate (5|71).
12. Find a formula for the number of different affine enciphering transformations there are with an N-letter alphabet.
13. Prove that any sequence of positive integers $\left\{v_{i}\right\}$ with $v_{i+1} \geq 2 v_{i}$, is super increasing.
14. Define the discrete logarithm problem.
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage
15. Assume f is multiplicative. Prove that $f^{-1}(n)=\mu(n) f(n)$ for every square free n.
16. Let $f(n)=[\sqrt{n}]-[\sqrt{n-1}]$. Prove that f is multiplicative but not completely multiplicative.
17. State and prove Euler's summation formula. Deduce that $\sum_{n \leq x} \frac{1}{n^{\alpha}}=\frac{x^{\alpha+1}}{\alpha+1}+O\left(x^{\alpha}\right)$, if $\alpha \geq 0$.
18. If $m \mid n$, prove that $\varphi(m) \mid \varphi(n)$.
19. Show that $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$ and $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1$ are logically equivalent.
20. Prove that $(2 \mid p)=(-1)^{\left(p^{2}-1\right) / 8}$, where p is an odd prime. Also find all odd primes, for which 2 is a quadratic non-residue.
21. Prove that the set of lattice points in the plain visible from the origin contains arbitrarily large square gaps.
22. Solve the following system of simultaneous congruence

$$
\begin{gathered}
x+4 y \equiv 1(\bmod 9) \\
5 x+8 y \equiv 2(\bmod 9)
\end{gathered}
$$

23. Working in the 26 letter alphabet with enciphering matrix $\left(\begin{array}{cc}15 & 17 \\ 4 & 9\end{array}\right)$, decipher the cipher text "FWMDIQ".
24. Find the discrete \log of 153 to the base of 2 in \mathbb{F}_{181}^{*}.
($7 \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. Given integers r, d and k such that $d \mid k$, also $\mathrm{k} \geq 1$ and $\operatorname{gcd}(r, d)=1$. Show that the number of elements in the set

$$
S=\left\{r+t d, t=1,2, \ldots, \frac{k}{d}\right\}
$$

which are relatively prime to k is $\frac{\varphi(k)}{\varphi(d)}$.
26. With usual notations, prove that there is a constant A such that $\sum_{p \leq x}\left(\frac{1}{p}\right)=\log (\log x)+A+O\left(\frac{1}{\log x}\right)$ for all $x \geq 2$.
27. State and prove the Gauss Lemma and deduce the formula for finding the value of m in the lemma.
28. Write short notes on the following with examples
(a) RSA Cryptosystem.
(b) Diffie-Hellman key exchange system.

