\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018

(CUCSS - PG)
(Mathematics)

CC17P MT2 C10 - ODE AND CALCULUS OF VARIATIONS

(2017 Admissions: Regular)
Time: Three Hours
Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define Interval of convergence and find Interval of convergence for the series $\sum_{n=0}^{\infty} x^{n}$
2. Locate and classify singular points of $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$
3. Find the indicial equation and its roots for $4 x y^{\prime \prime}+2 y^{\prime}+y=0$
4. Show that $e^{x}=\lim _{b \rightarrow \infty} F\left(a, b, a, \frac{x}{b}\right)$
5. Find the first two terms of the Legendre series for $\mathrm{f}(\mathrm{x})=e^{x}$
6. Show that $\left(n+\frac{1}{2}\right)!=\frac{(2 n+1)!\sqrt{\pi}}{2^{n+1} n!}$
7. State orthogonal property of Bessel function
8. State Bessel expansion theorem
9. Find critical points and phase portrait of $\left\{\begin{array}{l}\frac{d x}{d t}=-x \\ \frac{d y}{d t}=-y\end{array}\right.$
10. Show that the function $\mathrm{E}(\mathrm{x}, \mathrm{y})=\mathrm{a} x^{2}+b x y+c y^{2}$ is positive definite if and only if $\mathrm{a}>0$ and $b^{2}-4 a c<0$
11. Explain Picard's method of successive approximation
12. Show that $\mathrm{f}(\mathrm{x}, \mathrm{y})=y^{1 / 2}$ does not satisfy Lipschitz condition on the rectangle $|\mathrm{x}| \leq 1$ and $0 \leq y \leq 1$.
13. Find the Extremal of the integral $\int_{x_{1}}^{x_{2}}\left(y^{2}-y^{\prime 2}\right) \mathrm{dx}$.
14. Show that every non trivial solution of $y^{\prime \prime}+\left(\sin ^{2} x+1\right) y=0$ has an infinite number of positive zeros
($14 \times 1=14$ Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Find the general solution of Legendre's equation in terms of power series
16. Find the general solution of $\left(1-e^{x}\right) y^{\prime \prime}+\frac{1}{2} y^{\prime}+e^{x} y=0$ near the singular point $\mathrm{x}=0$ by changing the independent variable to $\mathrm{t}=e^{x}$
17. Show that $\mathrm{x}=\infty$ is an irregular singular point for the confluent hyper geometric equation
18. Show that $\frac{d}{d x}\left\{x^{-p} J_{p}(x)\right\}=-x^{-p} J_{p+1}(x)$
19. Determine the nature and stability property of the critical point $(0,0)$ for $\left\{\begin{array}{l}\frac{d x}{d t}=-3 x+4 y \\ \frac{d y}{d t}=-2 x+3 y\end{array}\right.$
20. Define Liapunov function and prove that the critical point $(0,0)$ is stable if there exist a Liapunove function $\mathrm{E}(\mathrm{x}, \mathrm{y})$ for the system $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array}\right.$
21. Verify that $(0,0)$ is a simple critical point of the system $\left\{\begin{array}{l}\frac{d x}{d t}=x+y-2 x y \\ \frac{d y}{d t}=-2 x+y+3 y^{2}\end{array}\right.$ and determine the nature of the critical point
22. Solve the initial value problem using Picard's method $\left\{\begin{array}{l}\frac{d y}{d x}=z, y(0)=1 \\ \frac{d z}{d x}=-y, z(0)=0\end{array}\right.$
23. Find the curve of fixed length L that joins the point $(0,0)$ and $(0,1)$ lies above the X axis and encloses the maximum area between itself and the X - axis
24. State and prove Sturm's separation theorem
($7 \times 2=14$ Weightage)

Part C

Answer any two questions. Each question carries 4 weightage.
25. Solve $4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0$
26. State and prove orthogonal property of Legendre polynomials
27. Find the general solution of $\left\{\begin{array}{l}\frac{d x}{d t}=5 x+4 y \\ \frac{d y}{d t}=-x+y\end{array}\right.$
28. Let $\mathrm{y}(\mathrm{x})$ and $\mathrm{z}(\mathrm{x})$ be non trivial solutions of $y^{\prime \prime}+q(x) y=0$ and $z^{\prime \prime}+r(x) z=0$, where $\mathrm{q}(\mathrm{x})$ and $\mathrm{r}(\mathrm{x})$ be positive functions such that $\mathrm{q}(\mathrm{x})>\mathrm{r}(\mathrm{x})$ then show that $\mathrm{y}(\mathrm{x})$ vanishes at least once between every two successive zeroes of $z(x)$

