(Pages: 2)

Name	 •••	 	•	 •		•	•	
Reg. No	 	 			 			

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018

(CUCSS - PG)

(Mathematics)

CC17P MT2 C08 – REAL ANALYSIS - II

(2017 Admission: Regular)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Show that the set of rational numbers has outer measure zero.
- 2. If $m^*(E) = 0$, then show that *E* is measurable.
- 3. Show that continuous functions are measurable.
- 4. If f is a measurable function and if B is a Borel set, then show that $f^{-1}(B)$ is a measurable set.
- 5. State Fatou's Lemma.
- 6. Show that if f is integrable, then f is finite valued a.e.
- 7. Give an example where $D^+(f+g) \neq D^+(f) + D^+(g)$.
- 8. Show that if f is of bounded variation on [a, b], then f is bounded on [a, b].
- 9. Show that the Lebesgue set of an integrable function *f* contains any point at which *f* is continuous.
- 10. What do you mean by a complete measure?
- 11. Define signed measure.
- 12. If v_1, v_2 and μ are measures and $v_1 \perp \mu$, $v_2 \perp \mu$, then show that $(v_1 + v_2) \perp \mu$.
- 13. Is it true that every continuous function absolutely continuous? Justify.
- 14. State Riesz representation theorem for C(I).

$(14 \times 1 = 14 \text{ Weightage})$

PART B

Answer any seven questions. Each question carries 2 weightage.

- 15. Show that Lebesgue outer measure has the property of countable sub additivity.
- 16. Show that every Borel set is measurable.
- 17. Prove that the characteristic function χ_A of the set A is measurable iff A is measurable.
- 18. If f is an integrable function and if A and B are disjoint measurable sets, then prove that $\int_{A \cup B} f \, dx = \int_A f \, dx + \int_B f \, dx$.

17P203

- 19. Show that a function $f \in BV[a, b]$, if and only if f is the difference of two finite-valued monotone increasing functions on [a, b], where a, b are finite.
- 20. If f is Lebesgue integrable over (a, b) and if $\int_{a}^{x} f dt = 0, \forall x \in (a, b)$, then show that f = 0 a.e. in (a, b).
- 21. Show that if μ is not complete, then f is measurable and f = g a.e. do not imply that g is measurable.
- 22. If μ is a measure, $\int f d\mu$ exists and $\nu(E) = \int_E f d\mu$, then prove that ν is absolutely continuous w.r.t. μ .
- 23. If f is absolutely continuous on [a, b], where a, b are finite, then show that $f \in BV[a, b]$.
- 24. Show that every bounded linear functional F on C(I) can be written as $F = F^+ F^$ where F^+ , F^- are positive linear functionals.

$(7 \times 2 = 14 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 4 weightage.

- 25. (a). Show that the class \mathcal{M} of Lebesgue measurable sets is a σ algebra.
 - (b). Show that every interval is measurable.
- 26. (a). State and prove Lebesgue's dominated convergence theorem.
 - (b). If f is integrable, then prove that $\left|\int f \, dx\right| \leq \int |f| \, dx$.
- 27. State and prove Lebesgue's differentiation theorem.
- 28. State and prove Radon Nikodym Theorem.

 $(2 \times 4 = 8 \text{ Weightage})$
