17P215	(Pages: 2)	Name
		Reg No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P CH2 C05 - APPLICATIONS OF QUANTUM MECHANICS AND GROUP THEORY

(Chemistry)

(2015 Admission onwards)

Time: Three Hours Maximum: 36 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. State variation theorem.
- 2. Write down the slater determinant for Li atom.
- 3. Write down the Schrodinger equation for H_2 molecule.
- 4. What is Fock operator?
- 5. What is Roothan's concept of basis function?
- 6. Write down the spectroscopic term symbol for N_2 molecule.
- 7. Discuss charge density and free valence for conjugated systems
- 8. What is Frost –Huckel Circle Mnemonic device for cyclic polyenes?
- 9. $\int x3 dx$ (limit -a to+a) Find out whether it is a vanishing integral or not? Justify your answer.
- 10. State non crossing rule as applied to correlation diagrams
- 11. Construct projection operator of B_1 representation for hydrogen is orbitals of H_2O molecule belonging to C_{2v} point group.
- 12. What is transition moment integral?

 $(12 \times 1 = 12 \text{ Weightage})$

Section B

Answer any *eight* questions. Each question carries 2 weightage.

- 13. Illustrate how perturbation method is applied to particle in a ID box with slanted bottom.
- 14. How is variation method applied to calculate the energy of the ground state of He atom?
- 15. Write a brief account of quantum mechanical treatment of sp hybridization.
- 16. Distinguish STO and GTO.
- 17. Assign symmetry species for the molecular orbitals in H_2O . Find allowed electronic transitions. Use C_{2v} character table given below.
- 18. Using group theory rationalize the complimentary character of IR and Raman spectra.

- 19. How do you explain Laporte selection rule using group theory?
- 20. Draw the MO diagram for CO and NO and compare their bond order.
- 21. State and explain Born –Oppenheimer approximation. Discuss its significance.
- 22. Find the hybridized orbitals of C in CH₄ molecule. Character table of Td is given.

Td	Е	8C3	3C2	6S4	6σd		
A1	1	1	1	1	1		$x^2+y^2+z^2$
A2	1	1	1	-1	-1		
Е	2	-1	2	0	0		$(2z2-x^2-y^2,x^2-y^2)$
T1	3	0	-1	1	-1	R_x,R_yR_z	
T2	3	0	-1	-1	1	x,y.z	xz,xy,yz

23. Explain how projection operator can be used for constructing SALCs for the π MOs in cyclopropenyl cation (C₃H₃) + cation.

D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_{\nu}$		
A' ₁ A' ₂ E'	1	1	1 -1	1	1	1		$x^2 + y^2, z^2$
A_2'	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A_1''	1	1	$\begin{array}{c} 1 \\ -1 \\ 0 \end{array}$	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

24. Explain molecular orbital theory of benzene molecule using Huckel determinants.

 $(8 \times 2 = 16 \text{ Weightage})$

Section C

Answer any two questions. Each question carries 4 weightage.

- 25. Set up the Huckel determinant of butadiene and obtain their energies and coefficient of the π molecular orbitals.
- 26. Discuss Hartree –Fock self consistent field method for atoms.
- 27. Explain how group theory helps in predicting IR and Raman active vibrations in H₂O molecule.

28. Compare VB and MO methods for explaining bonding in H₂ molecule

 $(2 \times 4 = 8 \text{ Weightage})$