(Pages: 2)

Name	••	 	•		 •	•	•	•	•	•	 	• •	
Reg. No		 			 								

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2018

(Supplementary/Improvement)

(CUCSS - PG)

CC15P MT2 C07 – REAL ANALYSIS II

(Mathematics)

(2015, 2016 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- Prove or disprove : If *f* and *g* are real measurable function defined on [a,b], where a < b, then *fg* is measurable.
- 2. Show that there is a strictly increasing singular function on [0,1]
- 3. Show that *BA* is linear if *A* and *B* are linear transformations.
- 4. Find the derivative of a linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ at each point of \mathbb{R}^n
- 5. Prove that range of liner operator is a subspace.
- 6. Does there exists an algebra which is not a σ Algebra Justify your claim
- 7. Prove that the outer measure of a finite set is zero.
- 8. Show that product of two absolutely continuous functions is absolutely continuous.
- Prove that to every A ∈ L(ℝⁿ, ℝ¹) corresponds a unique y ∈ ℝⁿ such that Ax = x. y for every x ∈ ℝⁿ. Prove that ||A|| = |y|
- 10. Show that Dirichlet's function is not Riemann integrable.
- 11. If $A \in L(\mathbb{R}^n)$ with $Ax \neq 0$, for $x \neq 0$, is A onto? Justify your answer.
- 12. Show that if f is integrable over *E*, then so is |f| and $\left|\int_{E} f\right| \leq \int_{E} |f|$
- 13. Prove $\chi_{A\cap B} = \chi_A \chi_B$
- 14. Show that a function F is an indefinite integral then it is absolutely continuous.

$(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each question carries 1 weightage.

- 15. Prove that the set [a, b] is not countable, where a < b.
- 16. Show that A bounded function f on [a, b] is Riemann integrable if and only if the set of points at which f is discontinuous has measure zero.
- 17. Prove that if X is a complete metric space and ϕ is a contraction of $X \to X$ then there exist one and only one $x \in X$ such that $\phi(x) = x$

17P202

- 18. Show that dim $(\mathbb{R}^n) = n$.
- 19. Let Ω be the set of all invertable linear operators on \mathbb{R}^n then Ω is an open subset of $L(\mathbb{R}^n)$ and the mapping $A \rightarrow A^{-1}$ is continuous on Ω .
- 20. State and prove Lebesgue convergence theorem.
- 21. Construct a non measurable set.
- 22. Is sum and product of two simple function is simple? Justify.
- 23. Show that the interval (a, 5) is measurable.
- 24. Define bounded variation. Show that a function f is of bounded variation on [a,b] then f is the difference of two monotone real valued functions on [a,b].

 $(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 1 weightage.

- 25. Prove that let f be an increasing real valued function on the interval [a, b]. Then f is differentiable almost everywhere. The derivative f' is measurable, and $\int_{a}^{b} f'(x) dx \leq f(b) f(a)$.
- 26. Suppose the partial derivatives $D_j f_i$ exists and are continuous on E for $1 \le i \le m$ and $1 \le j \le n$. Show that f is continuously differentiable. Is the converse true ? Justify your answer.
- 27. State and prove Implicit function theorem.
- 28. Prove that let $\{u_n\}$ be a sequence of non negative measurable functions and let $f = \sum_{n=1}^{\infty} u_n$, then $\int f = \sum_{n=1}^{\infty} \int u_n$

 $(2 \times 4 = 8 \text{ Weightage})$
