18P269	(Pages: 2)	Name
		Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC17PCSS2 C02 - OPERATING SYSTEM CONCEPTS

(Computer Science)

(2017 Admission onwards)

Time: Three Hours Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Explain the thread states.
- 2. Define multi threading.
- 3. List the requirements for mutual exclusion.
- 4. Give the deadlock recovery strategy.
- 5. Define overlays.
- 6. What is the difference between internal and external fragmentation?
- 7. What is meant by demand paging?
- 8. What is the difference between Process and Thread?
- 9. What is meant by priority inversion?
- 10. Explain best fit and first fit algorithms for memory allocation.
- 11. Give any two objectives of Operating Systems.
- 12. Give the advantages of Remote Procedure Call.

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer any six questions. Each question carries 2 weightage.

- 13. Explain UNIX SVR4 Process management.
- 14. Write a note on ULTs & KLTs.
- 15. What is the difference between mode switch and process switch?
- 16. What is the average waiting time for these processes with the Round Robin scheduling algorithm.

Process	Arrival Time	Burst Time
P1	0	5
P2	1	3
P3	3	6
P4	5	1
P5	6	4

- 17. Explain the conditions for Deadlock. How deadlock can be described in terms of resource allocation graph.
- 18. What are the characteristics of Real Time Operating Systems?
- 19. What are the design issues involved in multiprocessor scheduling?
- 20. Give the design issues associated with RPC.
- 21. How does client/server differ from other distributed processing solution?

 $(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any *three* questions. Each question carries 4 weightage.

- 22. Write a short note on mobile operating systems. Compare IOS and Android
- 23. Explain page replacement algorithms.
- 24. Explain real time scheduling algorithms.
- 25. Explain (a) readers writers problem (b) Dining Philosopher's problem.
- 26. Explain major achievements of Operating System.
- 27. Consider the following snapshot for a system:

Process Allocation Maximum Available

Process	Allocation			Maximum			Available					
	A	В	С	D	A	В	С	D	A	В	С	D
P0	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
Р3	0	6	3	2	2	3	5	6				
P4	0	0	1	4	0	6	5	6				

- a Write an algorithm to find out whether the system is in a safe state or in unsafe state.
- b What is the content of the matrix Need?
- c Is the system in a safe state?

 $(3 \times 4 = 12 \text{ Weightage})$
