18P272

(Pages: 2)

Name:	
Reg. No:	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Improvement/Supplementary)

(CUCSS - PG)

(Computer Science)

CC17P CSS2 E05 - NUMERICAL AND STATISTICAL METHODS

(2017 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Write the formula for Bairstow's and Newton-Raphson methods.
- 2. Differentiate between linear and nonlinear equations.
- 3. Define Simpson's 3/8th rule.
- 4. What is conditional probability?
- 5. What is an optimal solution?
- 6. What is an iterative method?
- 7. Differentiate between absolute and relative errors.
- 8. What is interpolation? State any three methods.
- 9. What is a random variable?
- 10. State the axioms of probability.
- 11. How to convert an asymmetric assignment problem to a symmetric problem?
- 12. Define degeneracy in transportation problem.

(12 x 1 = 12 Weightage)

PART B

Answer any six questions. Each question carries 2 weightage.

- 13. Obtain a root of the equation correct to four decimal places $x^3 4x 9 = 0$ by False position method.
- 14. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's 1/3 rule taking h = 1/4
- 15. Consider a transportation problem in which the cost, supply and demand values are presented in the given table.

	1	2	3	Supply
1	5	4	3	100
2	8	4	3	300
3	9	7	5	300
Demand	300	200	200	

i) Is this a balanced problem? Why?

ii) Obtain the initial feasible solution using the North-West Corner rule.

- 16. Explain Newton's forward interpolation method with an example.
- 17. Solve the following system of equation using Gauss elimination method.

$$x + y + z = 3$$
$$2x + 3y + z = 6$$
$$x - y - z = -3$$

- 18. A bag contains 7 red, 12 white and 4 green balls. What is the probability of 3 balls drawn are all white?
- 19. Using Milne-Simpson's method solve y' = 30 5y with y(0) = 1, over $0 \le t \le 5$
- 20. State and prove Bayes theorem.
- 21. Solve the linear equations using graphical method. $2x + y \ge 8$, $2x + 2y \ge 10$, $x \ge 0$, $y \ge 0$

(6 x 2 = 12 Weightage)

PART C

Answer any three questions. Each question carries 4 weightage.

- 22. Solve the following system of equations using Secant method 2x 3y + 10z = 3, -x + 4y + 2z = 20, 5x + 2y + z = 12
- 23. Use Runge-Kutta 4th order method to find the values of y (0.1) and y (0.2), given that $\frac{dy}{dx} = x + y^2$, y (0) =1, and h = 0.1
- 24. Estimate f (6) using Lagrange's interpolation formula from the following data

Х	3	7	9	10
f (x)	168	120	72	63

- 25. Derive Gauss-Seidel formula.
- 26. Four jobs (J₁, J₂, J₃, and J₄) need to be executed by four workers (W₁, W₂, W₃, and W₄), one job per worker. The matrix below shows the cost of assigning a certain worker to a certain job. Minimize the total cost of the assignment.

	J_1	\mathbf{J}_2	J ₃	J_4
W_1	82	83	69	92
W_2	77	37	49	92
W ₃	11	69	5	86
W_4	8	9	98	23

27. Explain dual simplex method with an example.

(3 x 4 = 12 Weightage)