18P213

(Pages: 2)

Name..... Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P CH2 C05 - APPLICATIONS OF QUANTUM MECHANICS AND GROUP THEORY

(Chemistry)

(2015 Admission onwards)

Time: Three Hours

Maximum:36 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. What do you mean by first order perturbation method? Explain.
- 2. Write down the Hamiltonian operator for the Li atom, in a.u.
- 3. What is Fock operator?
- 4. Write down the slater determinantal wave function for He atom in the ground state.
- 5. State and Explain non-crossing rule.
- 6. Differentiate between SALC and SAGO.
- 7. Write the spectroscopic term symbol for N_2 .
- 8. Arrange O_2 , O_2^+ and O_2^- in the increasing order of stability. Justify your answer.
- 9. You are given the integral $\int_{-a}^{+a} x^3 dx$. Check whether it is a vanishing integral or not.
- 10. Explain transition moment integral. How does it help in predicting spectroscopic transition?
- 11. What is Pauli's antisymmetric principle?
- 12. Use the projection operator method to find the symmetry species of 1S orbitals of H-atoms of water molecule. Use the character table in question no.21.

(12 x 1 = 12 Weightage)

Section B

Answer any *eight* questions. Each question carries 2 weightage.

- 13. Find out the ground state energy and wave function of He atom using variation theorem (Hint J =5/8Z, $\int_0^\infty rexp(-2Zr)dr = 1/2Z^2$)
- 14. Discuss the Frost -Hückel circle mnemonic device for cyclic polyenes.
- 15. Briefly discuss the Roothan's concept of basis functions.
- 16. Write a brief note of quantum mechanical treatment of sp^2 hybridization.
- 17. Taking bonding in NO, draw correlation diagram. Discuss.
- 18. Write the four possible spin and orbital combinations of ground state of He atom. Which one will be true representation of the ground state?

- 19. Compare the VB and MO treatment of molecules.
- 20. Explain HMO treatment of butadiene, to find the π bond energy.
- 21. HCHO belongs to C_{2v} point group. Find the symmetry species of MO's. (You may neglect S-orbitals)

C _{2v}	Е	C2	σν	σν'
A1	1	1	1	1
A2	1	1	-1	-1
B1	1	-1	1	-1
B2	1	-1	-1	1

- 22. Explain the term Inverse transformation.
- 23. Rationalize the rule of mutual exclution principle using group theory.
- 24. Using C_{3V} character table find out $E \otimes E$ and reduce it.

C _{3v}	E	2C3	3σν	2	57 58
A1	1	1	1	7	$x^2 + y^2$, z^2
A ₂	1	1	-1	Rz	
Ε	2	-1	0	$(X, Y), (R_x, R_y)$	(x ² - y ² , xy), (xz, yz)

(8 x 2 = 16 Weightage)

Section C

Answer any *two* questions. Each question carries 4 weightage.

25. Find the IR and Raman active vibrations of CH_4 molecule. Use the T_d character table given below.

T _d	E	8C ₃	3C ₂	6S ₄	6 σ _d	linear functions, rotations	quadratic functions
A_1	+1	+1	+1	+1	+1	-	$x^2+y^2+z^2$
A ₂	+1	+1	+1	-1	-1	-	-
E	+2	-1	+2	0	0	-	$(2z^2-x^2-y^2, x^2-y^2)$
T ₁	+3	0	-1	+1	-1	$(\mathbf{R}_{\mathrm{x}},\mathbf{R}_{\mathrm{y}},\mathbf{R}_{\mathrm{z}})$	-
T ₂	+3	0	-1	-1	+1	(x, y, z)	(xy, xz, yz)

26. Illustrate variation theorem using the trial wave function as $e^{-\alpha r^2}$ for hydrogen atom.

27. Discuss briefly the self consistent filed method of solving many electron atoms.

28. Taking H₂ as an example compare and contrast VB and MO theory.

(2 x 4 = 8 Weightage)
