(Pages: 2)

Name..... Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/ Supplementary/Improvement)

(CUCSS - PG)

CC15P MT2 C06/CC17P MT2 C07/CC18P MT2 C07 - ALGEBRA II

(Mathematics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Find maximal ideal of $Z \times Z$
- 2. Is $\mathbb{Q}[x]/\langle x^2 5x + 6 \rangle^a$ field? why?
- 3. Prove that $x^2 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$
- 4. Prove that doubling the cube is impossible.
- 5. Find the primitive 8^{th} roots of unity in GF(9)
- 6. Find all conjugates of $\sqrt{2} + i$ over \mathbb{R}
- 7. Prove that regular 7-gon is not constructible.
- 8. Describe all extension of the identity map of \mathbb{Q} to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2})$ onto a subfield of \mathbb{Q}
- 9. Find the degree of the splitting field of $x^4 1$ over \mathbb{Q}
- 10. Define a normal extension of a field F and give one example.
- 11. Find the 8^{th} Cyclotomic extension of \mathbb{Q}
- 12. Find the group of the polynomial $x^3 1$ over \mathbb{Q}
- 13. Show that the polynomial $x^5 2$ is solvable by radicals over \mathbb{Q}
- 14. Find $\varphi_{12}(x)$ in $\mathbb{Q}[x]$

$(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Prove that a field contains no proper nontrivial ideals.
- 16. An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if and only if p(x) is irreducible over F
- 17. If *E* is a finite extension field of a field *F* and *K* is a finite extension field of *E*, Prove that *K* is a finite extension of *F* and [*K*:*F*] = [*K*:*E*][*E*: *F*]

18P201

- 18. If F is any finite field, then for every positive integer n, there is an irreducible polynomial in F[x] of degree n
- 19. Find a basis of $Q(\sqrt[3]{2}, i)$ over \mathbb{Q}
- 20. State and prove Primitive element theorem.
- 21. Prove that every field of characteristic zero is perfect.
- 22. Find $G(K/_{\mathbb{Q}})$ where K is the splitting field of $x^3 2$ over \mathbb{Q}
- 23. Find all elements of the group $G(K/\mathbb{Q})$ where K is the splitting field of $x^4 + 1$ and prove that it is isomorphic to K_4
- 24. Let *F* be a field of characteristic zero, and let $a \in F$. If *K* is the splitting field of $x^n a$ over F, then G(K/F) is a solvable group.

$(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Let *F* be a field and let f(x) be a non-constant polynomial in F[x]. Prove that there exist an extension field *E* of *F* and $\alpha \in E$ such that $f(\alpha) = 0$
- 26. Prove that field *E*, where $F \le E \le F$ is a splitting field over *F* if and only if every automorphism of \overline{F} leaving *F* fixed maps *E* onto itself and thus induces an automorphism of *E* leaving *F* fixed.
- 27. State and Prove isomorphism extension theorem.
- 28. State main theorem of Galois. Using this Prove that G(K/F) is isomorphic to \mathbb{Z}_{12} where $K = GF(p^{12})$

 $(2 \times 4 = 8 \text{ Weightage})$
