SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)
(CUCSS - PG)
CC17P MT2 C10/CC18P MT2 C10 - ODE AND CALCULUS OF VARIATIONS
(Mathematics)
(2017 Admission onwards)
Time: Three Hours
Part A
Answer all questions. Each question carries 1 weightage.

1. Define analyticity of a function at a point x_{0}
2. Locate and classify the singular points on the x-axis of the differential equation

$$
(3 x+1) x y^{\prime \prime}-(x+1) y^{\prime}+2 y=0
$$

3. Find the indicial equation and its roots for the differential equation

$$
x^{3} y^{\prime \prime}+(\cos 2 x-1) y^{\prime}+2 x y=0
$$

4. Evaluate $\lim _{a \rightarrow \infty} F\left(a, a, \frac{1}{2}, \frac{-x^{2}}{4 a^{2}}\right)$
5. Determine the nature of the point $x=\infty$ for the Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0
$$

6. State the orthogonality property of Legendre polynomials.
7. Replace the differential equation $y^{\prime \prime}-x^{2} y^{\prime}-x y=0$ by an equivalent system of first order equations.
8. Define the Wronskian of two solutions of the homogenous system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right.
$$

9. Define autonomous system and give an example.
10. Describe the phase portrait of the system $\left\{\begin{array}{l}\frac{d x}{d t}=-x \\ \frac{d y}{d t}=-y\end{array}\right.$
11. Determine the auxiliary equation of the autonomous system $\left\{\begin{array}{l}\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\ \frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y\end{array}\right.$
12. State Sturm comparison theorem.
13. Define critical point and write the list of different types of critical points.
14. Find the extremal for the intergral $\int_{x_{1}}^{x_{2}} \frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{y}$

Answer any seven questions. Each question carries 2 weightage

15. Consider the differential equation $y^{\prime}=2 x y$, find a power series solution of the form $y=\sum a_{n} x^{n}$, recognise the resulting series as the expansion of a familiar function and verify it by solving the equation directly
16. Find a Frobenius series solution of the differential equation $4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0$
17. Consider the differential equation $x(1-x) y^{\prime \prime}+[p-(p+2) x] y^{\prime}-p y=0$, where p is a constant. If p is not an integer, find the general solution near $x=0$ in terms of hypergeometric functions.
18. Let $\mathrm{J}_{\mathrm{p}}(\mathrm{x})$ be the Bessel function of the first kind of order p . Prove the following
(a) $2 \mathrm{~J}_{\mathrm{p}}{ }^{\prime}(\mathrm{x})=\mathrm{J}_{\mathrm{p}-1}(\mathrm{x})-\mathrm{J}_{\mathrm{p}+1}(\mathrm{x})$
(b) $2 \mathrm{p} \mathrm{J}_{\mathrm{p}}(\mathrm{x})=\mathrm{x}\left[\mathrm{J}_{\mathrm{p}-1}(\mathrm{x})+\mathrm{J}_{\mathrm{p}+1}(\mathrm{x})\right.$
19. Let $P_{n}(x)$ be the $n^{\text {th }}$ Legendre polynomial, Prove that

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

21. For the linear system $\left\{\begin{array}{l}\frac{d x}{d t}=x \\ \frac{d y}{d t}=-y\end{array}\right.$

Find :
(a) The differential equation of the paths.
(b) Solve the equation found in (a) and sketch a few of the paths showing the direction of increasing it.
(c) Discuss the stability of the critical point.
22. Define simple critical points of non linear systems.

Show that $(0,0)$ is simple critical point of $\left\{\begin{array}{l}\frac{d x}{d t}=-2 x+3 y+x y \\ \frac{d y}{d t}=-x+y-2 x y^{2}\end{array}\right.$
23. Show that the function $f(x, y)=x y$
(a) Satisfies a Lipschitz condition on any rectangle $a \leq x \leq b$ and $c \leq y \leq d$
(b) Does not satisfy Lipschitz condition on the entire plane
24. Find the point on the plane $a x+b y+c z=d$ that is nearest the origin by the method of Lagrange multipliers.

