(Pages: 2)

Name:.... Reg. No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Supplementary/Improvement)

(CUCSS - PG)

(Mathematics)

CC17P MT2 C11 / CC18P MT2 C11 - OPERATIONS RESEARCH

(2017 Admissions onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define maximum flow problem.
- 2. Define path, chain, cycle, components with example.
- 3. Define sensitivity analysis.
- 4. Define Basic feasible solutions.
- 5. Define convex functions.
- 6. What is degeneracy in linear programming problem?
- 7. Prove that dual of the dual is primal.
- 8. Assignment problem is a particular case of Transportation problem. Justify.
- 9. Define loop in transportation array.
- 10. Define generalized transportation problem.
- 11. Define ILP and MILP.
- 12. Define Mathematical expectation of the game.

13. Find the optimal strategy and value of the game $\begin{bmatrix} 2 & -1 & -2 \\ 1 & 0 & 1 \\ -2 & -1 & 2 \end{bmatrix}$

14. Define the concept of Notion of Dominance.

(14 x 1 = 14 Weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Show that the linear function f(X) = CX is both convex and concave.
- 16. Show that if $\{x_i\}$ and $\{y_i\}$ are two flows in a graph, then $\{ax_i + by_i\}$ is also a flow. Where a, b are real constants.
- 17. Show that an optimal solution of Min f(X) = CX, Subject to $X \in T_F$ is an optimal solution of Min f(X) = CX, subject to $X \in [T_F]$. Conversely, a basic optimal solution of Min f(X) = CX, subject to $X \in [T_F]$ is an optimal solution of Min f(X) = CX, subject to $X \in T_F$

18P206

- 18. Prove that a vertex of S_F is a basic feasible solution.
- 19. Prove that transportation problem has a triangular basis.
- 20. Describe the effect of deletion of the variables in the optimal solution of an LP problem.
- 21. Explain Transportation matrix with example.
- 22. Explain the Caterer problem.
- 23. State and prove max flow min cut theorem.
- 24. Solve the game with the given payoff matrix $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$

(7 x 2 = 14 Weightage)

Part C

Answer any *two* questions. Each question carries 4 weightage.

- 25. State and prove fundamental theorem on Rectangular Games.
- 26. Solve the transportation problem

	Destination			
Origin	D ₁	D ₂	D ₃	Availability
O ₁	4	5	2	30
O ₂	4	1	3	40
O ₃	3	6	2	20
O_4	2	3	7	60
Requirement	40	50	60	

27. Solve the game using the notion of dominance with pay off matrix $\begin{bmatrix} 0 & 5 & -4 \\ 3 & 9 & -6 \\ 3 & -1 & 2 \end{bmatrix}$

28. Explain branch and bound method using a suitable example.

(2 x 4 = 8 Weightage)
