(Pages: 2)

Name:	
Reg. No:	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2019

(Regular/Improvement/Supplementary)

(CUCSS - PG)

CC15P ST2 C09 - DESIGN AND ANALYSIS OF EXPERIMENTS

(Statistics)

(2015 Admission onwards)

Time: 3 Hours

Maximum: 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Explain the role of randomization and replication in design of experiments.
- 2. When do you say that a parametric function is estimable?
- 3. Define linear hypothesis.
- 4. Give an example plan of Graeco Latin Square Design.
- 5. Explain the situation in which Analysis of Covariance is used.
- Derive the expression for efficiency of Latin Square Design over Randomized Block Design.
- 7. State four important parametric relations in Balanced Incomplete Block Design.
- 8. Define partially balanced incomplete block design with two associate classes.
- 9. Write a short note on Lattice design.
- 10. Obtain the main effects and interaction effects of a 2^2 factorial design.
- 11. Distinguish between complete confounding and partial confounding.
- 12. Explain the concept of fractional factorial.

$(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer any *eight* questions. Each question carries 2 weightage.

- 13. Discuss the regression approach to the analysis of variance.
- Derive the expression for the expected value of the mean squares in Randomized Block Design.
- 15. Write a short note on model adequacy checking.
- 16. If a single observation is missing in Latin square design, estimate the missing value.
- 17. Describe the analysis of Randomized Block Design with a single concomitant variable.
- 18. Construct a complete set of mutually orthogonal Latin squares of side 3

18P266

- 19. Explain the analysis of a Youden square.
- 20. Construct a BIBD with v = 16, b = 20, k = 4, r = 5 and $\lambda = 1$
- 21. State and prove the parametric relations in PBIBD.
- 22. Explain the analysis of a split plot design.
- 23. Analyse the 2^3 factorial design with ANOVA table.
- 24. Describe the Yates procedure of obtaining the main and interaction effects of a 2^n factorial experiment.

$(8 \times 2 = 16 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 4 weightage.

- 25. If Y_1 , Y_2 , Y_3 , Y_4 are independent random variables with common variance σ^2 and $E(Y_1) = E(Y_2) = \theta_1 + \theta_2$ and $E(Y_3) = E(Y_4) = \theta_1 + \theta_3$. Show that $\theta_1 + \theta_2$ and $2\theta_1 + \theta_2 + \theta_3$ are estimable. Find their best estimates.
- 26. Write down the model and explain in detail the analysis of a design in which no local control is used.
- 27. Distinguish between intra block and inter block analysis of BIBD.
- 28. Explain the analysis of a 3^2 factorial experiment with *r* replications.

 $(2 \times 4 = 8 \text{ Weightage})$
