16P301

(Pages : 2)

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, OCTOBER 2017

(Regular/Supplementary/Improvement) (CUCSS - PG) CC15PMT3C11 - COMPLEX ANALYSIS (Mathematics)

(2015 Admission Onwards)

Time: Three Hours

PART- A

Max : 36 weightage

Answer ALL questions Each question carries 1 weightage

1. Define conformal mapping with an example.

2. Show that Linear Transformation preserves cross ratio.

- 3. Find the cross ratio of $(1, i, \infty, 0)$.
- 4. Find the image of hyperbola { $z = x + i y : x^2 y^2 = 1$ } under the map $f(z) = z^2$.
- 5. State Cauchy's integral formula.
- 6. If f is analytic in a region G and if $f \neq 0$ then zero's of f are isolated.
- 7. What is the nature of the singularity of e^z at $z = \infty$.
- 8. Compute $\int_{|z|=1} \frac{1}{z^2+1} dz$.
- 9. Find the residues of the function $f(z) = \tan z$ at $z = \frac{\pi}{2}$.
- 10. How many roots does the equation $z^4 6z + 3 = 0$ have in the annulus 1 < |z| < 2.
- 11. State maximum principle for harmonic functions.
- 12. Expand $\frac{6}{(z-2)(z-3)}$ as a Laurent series in the region 2 < |z| < 3.
- 13. Prove that a non constant elliptic function has equally many poles as its zeros.
- 14. Find the harmonic conjugate of the function $e^x \cos y$.

 $(14 \times 1 = 14 \text{ weightage})$

PART-B

Answer any SEVEN questions Each question carries 2 weightage

- 15. Find the linear transformation which carries 0, i, -i to 1, -1, 0.
- 16. Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.
- 17. Let γ be a closed rectifiable curve. For any point *a* not on γ define $n(\gamma, a)$. Show that

 $n(\gamma, a)$ is always an integer.

- 18. State and prove Morera's theorem.
- 19. State and prove Schwarz lemma.
- 20. State and Prove Cauchy's residue theorem.
- 21. If f is analytic in a region G and $f'(z) \neq 0$ for any z in G, prove that $\log |f(z)|$ is harmonic in G.
- 22. Evaluate $\int_0^\infty \frac{dx}{(1+x^2)^2}.$
- 23. Derive the Legendre relation $n_1\omega_1 n_2\omega_2 = 2\pi i$.

24. Prove that
$$\begin{vmatrix} p(z) & p'(z) & 1\\ p(u) & p'(u) & 1\\ p(u+z) & -p'(u+z) & 1 \end{vmatrix} = 0.$$

 $(7 \times 2=14 \text{ weightage})$

PART- C

Answer any **TWO** questions Each carries 4 weightage

- 25. State and prove Cauchy's theorem for a disc.
- 26. Derive Poisson integral formula for harmonic function.
- 27. Discuss the evaluation of integrals of the type $\int_{-\infty}^{\infty} R(x)e^{ix}dx$ using the theory of residues.
- 28. State and prove Taylor's theorem.

 $(2 \times 4 = 8 \text{ weightage})$
