(Pages : 2)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, OCTOBER 2017

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P MT3 C12 - FUNCTIONAL ANALYSIS I

(Mathematics)

(2015 Admission Onwards)

Time: Three hours

Maximum: 36 Weightage

Part A

Answer all Questions. Each question carries 1 weightage

- 1. Prove or disprove: Property of completeness is shared by an equivalent metric.
- 2. State Minkowski's inequality for measurable functions.
- 3. For $1 \le p < r < \infty$, prove that the normed space $l^p \subset l^r$.
- 4. Let X be a normed space and Y be a closed subspace of X. Prove that X/Y is a normed space in the quotient norm.
- 5. State Riesz lemma.
- 6. Let \langle , \rangle be an inner product on a linear space *X*. Show that $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$ for every $x, y \in X$.
- 7. Prove that l^p with usual norm is not an inner product space unless p = 2.
- 8. Let *X* be an inner product space and *E* be an orthogonal subset of *X* such that $0 \notin E$. Prove that *E* is linearly independent.
- 9. Let {x₁, x₂, ..., x_n} be an orthogonal set in an inner product space X and k₁, k₂, ..., k_n be scalars having absolute value 1. Show that ||k₁x₁ + k₂x₂ + ... + k_nx_n|| = ||x₁ + x₂ + ... + x_n||.
- 10. Let X be an inner product space and Y be its subspace. Show that the best approximation to an element $x \in X$ from Y is unique if it exists.
- 11. Let X be a normed space over \mathbb{K} , $f \in X'$ and $f \neq 0$. Let $a \in X$ with f(a) = 1 and r > 0. Show that $U(a,r) \cap Z(f) = \emptyset$ iff $||f|| \le \frac{1}{r}$.
- 12. Prove that c_{00} is not closed in l^{∞} as a normed space.
- 13. Let *X*, *Y* be two normed spaces and $F : X \to Y$ be linear. Prove that *F* is continuous iff $g \circ F$ is continuous for every $g \in Y'$.
- 14. Show that the dual X' of every normed space X is a Banach space.

 $(14 \times 1 = 14 \text{ weightage})$

16P302

Part B

Answer any seven Questions. Each question carries 2 weightage

- 15. Show that the set of all polynomials in one variable is dense in C([a, b]) with the sup metric.
- 16. Let $E \subset \mathbb{R}$ be measurable. Show that the set of all simple measurable functions is dense in $L^{\infty}(E)$.
- 17. Show that every finite dimensional subspace of a normed space is complete.
- 18. Let X be a normed space. Show that X is finite dimensional iff the subset $\{x \in X : ||x|| \le 1\}$ of X is compact.
- 19. Let X and Y be normed spaces and $F: X \to Y$ be a linear map. Show that F is a homeomorphism iff there exist $\alpha, \beta > 0$ such that $\beta ||x|| \le ||F(x)|| \le \alpha ||x||$ for all $x \in X$.
- 20. State and prove Bessel's inequality.
- 21. Let $H = L^2([0,1])$, x(t) = 0, $t \in [0,1]$. Show that the best approximation to x from the set $E = \left\{ y \in L^2([0,1]) : \int_0^1 ty(t) \, dt = 1, \int_0^1 t^2 y(t) \, dt = 2 \right\}$ is $y(t) = -72 t + 100 t^2, t \in [0,1]$.
- 22. Let X be a normed space and $\{a_1, \dots, a_m\}$ be a linearly independent set in X. Show that there exist f_1, \dots, f_n in X' such that $f_j(a_i) = \delta_{ij}, 1 \le i, j \le m$.
- 23. Prove that a Banach space cannot have a denumerable (Hamel) basis.
- 24. State and prove uniform boundedness principle.

$(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two Questions. Each question carries 4 weightage.

- 25. For $1 \le p \le \infty$, show that l^p is complete.
- 26. Let X and Y be normed spaces and $F : X \to Y$ be a linear map such that the range R(F) of F is finite dimensional. Show that F is continuous iff the zero space Z(F) of F is closed in Y. Can we drop the finite dimensionality of R(F)? Justify.
- 27. Let *H* be non zero Hilbert space over \mathbb{K} . Prove that *H* is separable iff *H* has a countable orthonormal basis.
- 28. State and prove Hahn Banach Separation theorem.

(2 × 4=8 weightage)
