Name. \qquad
Reg. No
Reg. No......................

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, OCTOBER 2017

(Regular/Supplementary/Improvement)
(CUCSS - PG)

CC15P MT3 C14 - LINEAR PROGRAMMING AND ITS APPLICATIONS
 (Mathematics)

(2015 Admission Onwards)
Time : Three Hours
Maximum : 36 Weightage
PART A
Answer All Questions. Each question has weightage 1

1. Find convex hull of half line $x_{2}=0, x_{1} \geq 0$ and $x_{2} \geq 0, x_{1}=0$ in E_{2}
2. Prove that a vertex is a boundary point, but not all boundary points are vertices.
3. Find $H(x)$ of $f(x)=6 x_{2}^{2}-18 x_{2} x_{3}-6 x_{3} x_{1}+2 x_{1} x_{2}-7 x_{1}+5 x_{2}-6 x_{3}-4$
4. Find the unit vector in the direction of the steepest ascent of $f(x)=x_{1}^{2}+2 x_{1} x_{2}+x_{3} x_{1}+x_{4} x_{2}+x_{4}^{2}$ at the point $(1,0,-1,1)$
5. What is degeneracy in LP problem?
6. What is triangular basis in transportation problem?
7. Define generalized transportation problem
8. Write the dual of the LP problem

$$
\operatorname{Max} Z=2 x_{1}+2 x_{2}+5 x_{3}
$$

subject to:- $2 x_{1}-3 x_{2}-5 x_{3} \leq 7, \quad 3 x_{1}+6 x_{2}-x_{3} \geq 5, \quad x_{1}+2 x_{2}-3 x_{3}=6$
$x_{1} \geq 0, x_{3} \geq 0, x_{2}$ unrestricted
9. Define Transportation matrix with example.
10. Assignment problem is a particular case of transportation problem. Justify
11. What is meant by loops in a transportation array?
12. Find the optimal strategy and value of the game $\left|\begin{array}{lll}1 & 3 & 6 \\ 2 & 1 & 3 \\ 6 & 2 & 1\end{array}\right|$
13. State fundamental theorem on rectangular game.
14. What is integer linear programming?

$$
(14 \times 1=14 \text { Weightage })
$$

PART B

Answer any Seven Questions. Each question has weightage 2.
15. Show that the linear function $f(X)=C X$ is both convex and concave.
16. Prove that the convex polyhedron is a convex set
17. Examine $f(x)=x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+16 x_{2} x_{3}$ for relative extrima.
18. Prove that a vertex of S_{F} is a basic feasible solution.
19. Prove that transportation problem has a triangular basis.
20. State and prove mini max theorem.
21. Prove that if the primal problem is feasible, then it has an unbounded optimum iff the dual has no feasible solution
22. Find the relative maxima and minima and saddle points, if any, of $f(x)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-12 x_{2}+25$.
23. Solve the game using notion of dominance $\left|\begin{array}{ccc}0 & 5 & -4 \\ 3 & 9 & -6 \\ 3 & -1 & 2\end{array}\right|$.
24. Solve the transportation problem \(\left|\begin{array}{lll}4 \& 5 \& 2

4 \& 1 \& 3

3 \& 6 \& 2

2 \& 3 \& 7\end{array}\right|\)| 30 |
| :--- |
| 40 |

$40 \quad 50 \quad 60$
($7 \times 2=14$ Weightage)

PART C

Answer any Two Questions. Each question has weightage 4.
25. Obtain the optimal strategies for both persons and the value of the game for zero sum two person game whose payoff matrix is as follows:

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 6 \\
4 & 1 \\
2 & 2 \\
-5 & 0
\end{array}\right]
$$

26. Explain Cutting plane method. And solve Use cutting plane method to solve

$$
\begin{aligned}
& \text { Minimize } z=-2 x_{1}-3 x_{2} \\
& \text { subject to:- } \quad 2 x_{1}+2 x_{2} \leq 7,0 \leq x_{1} \leq 2, \quad 0 \leq x_{2} \leq 2 \\
& \quad x_{1}, x_{2} \text { are integers }
\end{aligned}
$$

27. Find the relative maximum, minimum and saddle points if any, of

$$
f(x)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-12 x_{2}+25
$$

28. Solve, Maximize $5 x_{1}+3 x_{2}+x_{3}$
subject to:- $2 x_{1}+x_{2}+x_{3}=3,-x_{1}+2 x_{3}=4 \quad x_{1}, x_{2}, \mathrm{x}_{3} \geq 0$.
