(Pages: 2)

Name: Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018 (CUCSS-PG)

Mathematics

CC17P MT3 C14 - FUNCTIONAL ANALYSIS

(2017 Admission)

Time: 3 Hours

Maximum: 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. If X is a separable metric space and $Y \subset X$, then show that Y is separable in the induced metric.
- 2. State Holder's and Minkowski's inequalities for the measurable functions.
- 3. Define operator norm of an operator on a normed space. Find the norm of the operator $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (y, 0).
- 4. Let E_1 and E_2 be open subsets of a normed linear space X. Then Show that $E_1 + E_2$ is open in X.
- 5. State Korovkin's theorem and give a proper dense subset of C[a, b].
- 6. Let X be a complex linear space and u be a real linear functional on it. Then give a complex linear functional f *on* X such that Re(f) = u.
- 7. Let X be a normed linear space over $K, f \in X^1$, dual space of X, and $f \neq 0$ Let $a \in X$ with f(a) = 1 and r > 0. Then prove that $U(a, r) \cap Z(f) = \emptyset$ if and only if $||f|| \le \frac{1}{r}$
- 8. Let X be a normed space and $a \in X$ be a non zero vector. Then show that there exist some $f \in X^1$ with (a) = ||a||.
- 9. Let Y be a subspace of a normed space X. Then show that $Y^0 \neq \emptyset$ if and only if Y = X, Where Y⁰ is the interior of Y.
- 10. Let X be a normed space and $f: X \to K$ be linear. Then show that f is closed if and only if f is continuous.
- 11. State and prove bounded Inverse theorem.
- 12. Let X be a normed linear space which satisfies parallelogram law. Define an inner product on it which is compatible with the norm.
- 13. Let $\{x_1, x_2, \dots, x_n\}$ be an orthogonal set in an inner product space X and k_1, k_2, \dots, k_n be scalars with absolute value one. Show that

 $||k_1x_1 + k_2x_2 + \dots + k_nx_n|| = ||x_1 + x_2 + \dots + x_n||$

17P307

14. Give an Orthonormal basis for $L^2[-\pi,\pi]$

(14 x 1 = 14 Weightage)

Part B

Answer any *seven* questions. Each question carries 2 weightage.

- 15. Give an example of a linear discontinuous function between two normed spaces. Justify your answer.
- 16. Prove that a linear map *F* from a normed space X to a normed space Y is a homeomorphism if and only if $\exists \alpha, \beta > 0$ such that $\beta ||x|| \le ||F(x)|| \le \alpha ||x|| \quad \forall x \in X$.
- 17. State true or false : A subset of a normed space is compact if and only if it is closed and bounded. Justify your answer.
- 18. Show that $\|.\|_1$, $\|.\|_2$ and $\|.\|_{\infty}$ are equivalent on K^n , Where K is either real or complex field.
- 19. Prove : A Banach space cannot have a denumerable basis.
- 20. Prove: Let X be a normed space and Y be a closed subspace of X. Then X is a Banach space if and only if Y and X/Y are Banach spaces in the induced norm and the quotient norm respectively.
- 21. Let X be a normed space E is a subset of X. Then E is bounded if and only if f(E) is bounded in $K \forall f \in X^1$.
- 22. State and prove open mapping theorem.
- 23. Let X and Y be normed spaces and $F: X \to Y$ be linear. Then F is continuous if and only for every Cauchy sequence (x_n) in X, $F(x_n)$ is Cauchy in Y.
- 24. State and prove Bessel's inequality.

(7 x 2 = 14 Weightage)

Part C

Answer any *two* questions. Each question carries 4 weightage.

- 25. Let X be a normed space over a field K(either real or complex) and Y be a subspace of X. Then show that
 - a) For $x \in X$, $y \in Y$ and $k \in K$, $||kx + y|| \ge |k| \operatorname{dist}(x, Y)$
 - b) If Y is finite dimensional, then Y is complete.
- 26. State and prove Hahn –Banach extension theorem.
- 27. Let $X = \{x \in C[-\pi, \pi]; x(\pi) = x(-\pi)\}$ with sup norm. Then show that Fourier series of every x in a dense subset of X diverges at zero.
- 28. State and prove closed graph theorem.

(2 x 4 = 8 Weightage)
