17P372

(Pages: 2)

Name: Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(Regular/Supplementary/Improvement)

(CUCSS - PG)

CC15P ST3 C12 - TESTING OF STATISTICAL HYPOTHESES

(Statistics)

(2015 Admission onwards)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define non randomized Test.
- 2. State Generalized Neyman-Pearson lemma.
- 3. What is level of significance?
- 4. Show that for Neyman-Pearson tests, power is greater than the size of test.
- 5. What are UMP unbiased tests?
- 6. Discuss the principle of invariance in testing of hypothese.
- 7. What are Bayesian tests?
- 8. Briefly describe χ^2 -test for testing the independent of attributes.
- 9. Define median test.
- 10. State Karlin-Rubin theorem.
- 11. What are the advantages of SPRT over fixed sample test?
- 12. Briefly describe important properties of SPRT.

(12 x 1 = 12 Weightage)

Part B

Answer any *eight* questions. Each question carries 2 weightage.

- 13. Let $X \sim U(0, \theta)$ based on n observations on X, derive the most powerful test for testing $H_0: \theta = \theta_0$ v/s $H_0: \theta = \theta_1$ ($\theta_0 < \theta_1$)
- 14. What is MLR property? Verify whether the Laplace distribution with pdf

f (x) = $\frac{1}{2} \exp(-|x - \theta|), -\infty < x < \infty, \theta \in \mathbb{R}$, possess MLR property.

- 15. What are UMP tests? Give an example where (i) UMP test does not exist, (ii) UMP test exist.
- 16. Suppose that X₁, ..., X_n are iid random variables having the Poisson(λ) distribution where λ ∈ ℜ⁺ is the unknown parameter. With preassigned α ∈ (0, 1), derive the randomized UMP level α test for H₀ : λ = λ₀ versus H1 : λ < λ₀ where λ₀ is a positive number.

- 17. Describe Likelihood ratio tests and discuss its properties.
- 18. Suppose that $X_1, ..., X_n$ are iid $N(0, \sigma^2)$ where $\sigma(> 0)$ is the unknown parameter. With preassigned $\alpha \in (0, 1)$, derive a level α LR test for the null hypothesis H_0 : $\sigma^2 = \sigma_0^2$ against an alternative hypothesis $H_1: \sigma^2 \neq \sigma_0^2$ in the implementable form.
- 19. What are α -similar tests? Discuss the construction of α -similar tests with Neyman structure.
- 20. Explain Mann-Whiteny test for two sample problem.
- 21. What is Kolmogrov-Smirnov test? Discuss its applications.
- 22. Define Kendall's tau. Describe properties of Kendall's tau.
- 23. Define OC and ASN function. Describe its properties.
- 24. Show that for a SPRT with stopping bounds A and B, A >B, and strength (α , β)

$$A \leq \frac{1-\beta}{\alpha} \text{ and } B \geq \frac{\beta}{1-\alpha}$$
.
(8 x 2 = 16 Weightage)

Part C

 $(8 \times 2 = 16 \text{ Weightage})$

Answer any *two* questions. Each question carries 4 weightage.

25. (a) Distinguish between randomised tests and non-randomised tests.

(b) Suppose that $X_1, ..., X_n$ are iid Geometric(p) where $p \in (0, 1)$ is the unknown parameter. With preassigned $\alpha \in (0, 1)$, derive the randomized UMP level α test for $H_0 : p \ge p_0$ versus $H_1 : p < p_0$ where p_0 is a number between 0 and 1.

- 26. Describe locally most powerful tests. Suppose $(X_1, ..., X_n)$ is a random sample from a N(θ , 1) distribution. Show that the locally most powerful test of H₀ : $\theta = 0$ against H₁ : $\theta > 0$ is also the uniformly most powerful test.
- 27. (a) Describe sign test.
 - (b) Explain Wilcoxon signed rank test. What are the advantages of Wilcoxon signed rank test over sign test?
- 28. Explain SPRT. Derive SPRT for testing H_0 : $\theta = \theta_0$ vs H_1 : $\theta = \theta_1$ for N(0, θ). Derive the expression for OC and ASN functions in this case.

(2 x 4 = 8 Weightage)