\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION NOVEMBER 2019 (CUCSS-PG)

 CC18P MT3 C03 - COMPLEX ANALYSIS

 CC18P MT3 C03 - COMPLEX ANALYSIS}
(Mathematics)
(2018 Admission Regular)

Part A

Answer all questions. Each question carries 1 weightage.

1. Let S the Riemann sphere. For the points $1+i$ and $2+3 i$ in \mathbb{C}, give the corresponding points in S.
2. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}$ be defined by $\gamma(t)=e^{i t}$. Evaluate $\int_{\gamma} \frac{1}{z} d z$.
3. Find the Mobius transformation which maps the points $1, i,-1$ into the points $i, 0,-i$.
4. Describe the set $\left\{z \in \mathbb{C}: e^{z}=i\right\}$.
5. Find the fixed points of a dilation.
6. Evaluate the integral $\int_{\gamma} \frac{2 z+1}{z^{2}+z+1} d z$ where γ is the circle $|Z|=2$.
7. Evaluate the integral $\int_{\gamma} \frac{e^{z}-e^{-z}}{z^{n}} d z$ where n is a positive integer and $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$
8. Let γ be closed rectifiable curve in an open set G. Show that if γ is homotopic to zero in G then γ is homologous to zero in G.
9. Show that if f and g are analytic functions on a region G such that $f . g(z)=f(z) g(z)=0$ for all $z \in G$, then either $f \equiv 0$ or $g \equiv 0$.
10. Define essential singularity. Give an example.
11. Let $f(z)=\frac{1}{z(z-1)(z-2)}$. Give the Laurent expansion of $f(z)$ in ann $(0 ; 1,2)$.
12. Prove that if $f: G \rightarrow \mathbb{C}$ is analytic and one-one, then $f^{\prime}(z) \neq 0$ for any $z \in G$.
13. Let $D=\{z:|z|<1\}$ and f be analytic on D with $|f(z)| \leq 1$ for all z in D and $f(0)=0$. Show that $|f(z)| \leq|z|$ for all z in D.
14. Determine the nature of the singularity of the function $f(z)=\frac{\operatorname{sinz} z}{z}$ at $z=0$.

Part B

Answer any seven questions. Each question carries 2 weightage.
15. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piece wise smooth function and $f:[a, b] \rightarrow \mathbb{C}$ be continuous. Prove that $\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) d \gamma(t) d t$.
16. Discuss the mapping properties of the function $f(z)=z^{2}$.
17. Let G he an open connected subset of \mathbb{C} and $f: G \rightarrow \mathbb{C}$ be differentiable with $f^{\prime}(z)=0$ for all $z \in G$. Show that f is a constant function.
18. If f is analytic in $B(a, R)$ and $|f(z)| \leq M$ for all z in $B(a, R)$, prove that $\left|f^{n}(a)\right| \leq \frac{n!M}{R^{n}}$.
19. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a closed rectifiable curve and $a \notin\{\gamma\}$. Prove that $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{(z-a)}$ is an integer.
20. Let G be a region and let $f: G \rightarrow \mathbb{C}$ be a continuous function such that $\int f=0$ for any triangular path T in G. Show that f is analytic.
21. Let G be a simply connected and $f: G \rightarrow \mathbb{C}$ be an analytic function such that $f(z)=0$ for any $z \in G$. Show that there is an analytic function $g: G \rightarrow \mathbb{C}$ such that $f(z)=\exp g(z)$.
22. Find poles of the function $f(z)=\frac{z^{2}}{1+z^{4}}$ and determine residue of $f(z)$ at one of its poles.
23. State Rouche's theorem and deduce fundamental theorem of Algebra.
24. Let G be a region and f be a non constant analytic function on G. Show that $f(U)$ is open for any open set U in G.

$$
(7 \times 2=14 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 4 weightage.
25. (a) Prove that the power series $\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ converges absolutely for each $z \in B(a, R)$ where $\frac{1}{R}=\lim \sup \left|a_{n}\right|^{\frac{1}{n}}$.
(b) Find the radius of convergence of the following power series
(i) $\sum_{n=0}^{\infty} a^{n^{2}} z^{n}$.
(ii) $\sum_{n=0}^{\infty} z^{n}$
26. Let γ_{0} and γ_{1} be two closed rectifiable curves in a region G and γ_{0} and γ_{1} be homotopic, then show that $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$ for every function f analytic on G.
27. State and prove Laurent Series Development.
28. Evaluate the integral $\int_{0}^{\infty} \frac{\sin x}{x}$.

