18P306

(Pages: 2)

Name:..... Reg. No.

THIRD SEMESTER M.Sc. DEGREE EXAMINATION NOVEMBER 2019 (CUCSS-PG) CC18P MT3 C03 - COMPLEX ANALYSIS (Mathematics)

(2018 Admission Regular)

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let S the Riemann sphere. For the points 1 + i and 2 + 3i in \mathbb{C} , give the corresponding points in S.
- 2. Let $\gamma: [0, 2\pi] \to \mathbb{C}$ be defined by $\gamma(t) = e^{it}$. Evaluate $\int_{\gamma} \frac{1}{z} dz$.
- 3. Find the Mobius transformation which maps the points 1, i, -1 into the points i, 0, -i.
- 4. Describe the set $\{z \in \mathbb{C} : e^z = i\}$.
- 5. Find the fixed points of a dilation.
- 6. Evaluate the integral $\int_{\gamma} \frac{2z+1}{z^2+z+1} dz$ where γ is the circle |Z| = 2.
- 7. Evaluate the integral $\int_{\gamma} \frac{e^z e^{-z}}{z^n} dz$ where *n* is a positive integer and $\gamma(t) = e^{it}, \ 0 \le t \le 2\pi$
- Let γ be closed rectifiable curve in an open set G. Show that if γ is homotopic to zero in G then γ is homologous to zero in G.
- 9. Show that if f and g are analytic functions on a region G such that $f \cdot g(z) = f(z)g(z) = 0$ for all $z \in G$, then either $f \equiv 0$ or $g \equiv 0$.
- 10. Define essential singularity. Give an example.
- 11. Let $f(z) = \frac{1}{z(z-1)(z-2)}$. Give the Laurent expansion of f(z) in ann (0; 1, 2).
- 12. Prove that if $f: G \to \mathbb{C}$ is analytic and one-one, then $f'(z) \neq 0$ for any $z \in G$.
- 13. Let $D = \{z : |z| < 1\}$ and f be analytic on D with $|f(z)| \le 1$ for all z
- in D and f(0) = 0. Show that $|f(z)| \le |z|$ for all z in D. 14. Determine the nature of the singularity of the function $f(z) = \frac{\sin z}{z}$ at z = 0.

 $(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Let $\gamma : [a, b] \to \mathbb{C}$ be a piece wise smooth function and $f : [a, b] \to \mathbb{C}$ be continuous. Prove that $\int_a^b f d\gamma = \int_a^b f(t) d\gamma(t) dt$.
- 16. Discuss the mapping properties of the function $f(z) = z^2$.
- 17. Let G he an open connected subset of \mathbb{C} and $f: G \to \mathbb{C}$ be differentiable with f'(z) = 0 for all $z \in G$. Show that f is a constant function.
- 18. If f is analytic in B(a, R) and $|f(z)| \leq M$ for all z in B(a, R), prove that $|f^n(a)| \leq \frac{n!M}{R^n}$.
- 19. Let $\gamma : [a, b] \to \mathbb{C}$ be a closed rectifiable curve and $a \notin \{\gamma\}$. Prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{(z-a)}$ is an integer.
- 20. Let G be a region and let $f : G \to \mathbb{C}$ be a continuous function such that $\int f = 0$ for any triangular path T in G. Show that f is analytic.
- 21. Let G be a simply connected and $f : G \to \mathbb{C}$ be an analytic function such that f(z) = 0for any $z \in G$. Show that there is an analytic function $g : G \to \mathbb{C}$ such that $f(z) = \exp g(z)$.
- 22. Find poles of the function $f(z) = \frac{z^2}{1+z^4}$ and determine residue of f(z) at one of its poles.
- 23. State Rouche's theorem and deduce fundamental theorem of Algebra.
- 24. Let G be a region and f be a non constant analytic function on G. Show that f(U) is open for any open set U in G.

$(7 \times 2 = 14 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. (a) Prove that the power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ converges absolutely for each $z \in B(a, R)$ where $\frac{1}{R} = \limsup |a_n|^{\frac{1}{n}}$.
 - (b) Find the radius of convergence of the following power series

(i)
$$\sum_{n=0}^{\infty} a^{n^2} z^n$$
. (ii) $\sum_{n=0}^{\infty} z^n$

- 26. Let γ_0 and γ_1 be two closed rectifiable curves in a region G and γ_0 and γ_1 be homotopic, then show that $\int_{\gamma_0} f = \int_{\gamma_1} f$ for every function f analytic on G.
- 27. State and prove Laurent Series Development.
- 28. Evaluate the integral $\int_0^\infty \frac{\sin x}{x}$. (2 × 4 = 8 Weightage)
